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Abstract— A large number of learning tools offering some 
sort of personalisation features rely mainly on the analysis of 
logged interactions between students and particular user 
interfaces. Much less attention has been given to the analysis of 
physical aspects so often present in ‘traditional’ intellectual 
tasks, although these are both important in the full 
development of a life-long learner. This paper (1) discusses 
existing literature focused on supporting learning using 
proximity and location analytics and sensors; and, based on 
this, (2) illustrates the feasibility and potential of these 
analytics for teaching and learning through an study in the 
context of proximity and location analytics in a team-based 
health simulation classroom.   
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I.  INTRODUCTION 
Traditionally, learning tools that offer adaptation features 

or personalised feedback often rely on behavioural data 
consisting of the logged students’ interactions with particular 
learning systems [1]. This can generate at least two 
situations. First, those learning tasks that are aimed at 
promoting the development of kinaesthetic skills are often 
neglected (e.g. learning to play a musical instrument, dance, 
use clinical equipment, improve the technique in sports, etc.). 
Second, the physicality aspects of ‘traditional’ intellectual 
tasks (e.g. face-to-face collaboration dynamics, classroom 
processes, teacher’s activity), which are also crucial for the 
full development of a life-long learner, may also be easily 
overlooked. These interactions between students and user 
interfaces have been feeding both Data Mining and Learning 
Analytics approaches to data-driven educational innovations 
(e.g. see [2]). Exceptions gone beyond this centre of interest 
can be found within multimodal analytics efforts [3] and 
approaches to understand affective states of learning [4]. 

With the recent and rapid progress in mobile and 
emerging pervasive technologies, many devices have 
extended capabilities to sense physical aspects of the 
learning context, such as proximity (e.g. the relative distance 
to a particular section of the classroom or to peers), and 
location (e.g. the position of students or teachers in the 
classroom, field, or public spaces). This means that student 

models can now include these physicality aspects, leading to 
a broader, richer understanding of learning behaviours.   

This paper has two parts. The first part discusses 
literature (Section 2) and identifies key areas (Section 3) 
where the physicality of learning can be supported by 
leveraging analytics and sensors of these two aspects 
(proximity and location). The second part illustrates the 
feasibility and potential of these analytics for supporting 
teaching and learning. We present one study that illustrates 
ways in which proximity and location tracked data can help 
us make sense of physical aspects of teamwork (Section 4).  

II. RELATED WORK 
In this section, we briefly discuss multimodal analytics 

approaches that have looked at other dimensions of student’s 
data, beyond interaction data, and the emerging interest in 
generating analytics support for physical aspects of learning. 

A. Multimodal learning analytics 
Multimodal learning analytics (MMLA) approaches have 

focused on integrating data from multiple dimensions of 
student activity beyond clickstreams and keystrokes. E.g., 
some studies have looked at analysing speech, handwriting, 
sketch, gesture, physical movements, facial expressions, 
gaze, and neurophysiological signals [3]. In the last few 
years, there has been an emerging interest and numerous 
advances in the area of MMLA. For example, multimodal 
data (digital pen, speech, images) have been analysed to 
understand how maths students work and collaborate [5]; 
and computer vision techniques have been used to identify 
gestures that differentiate experts from novices [6]. 
However, most MMLA studies have been conducted under 
controlled laboratory conditions [7]. Thus, still much work is 
needed to find ways in which these approaches can solve 
challenges in realistic, mainstream learning scenarios.  

B. Analytics Support for Psychomotor Learning 
The acquisition of kinaesthetic skills is crucial for many 

kinds of learning tasks [8] such as learning a sign language, 
improving handwriting, drawing, practicing sports or martial 
arts, etc. Generating personalised support in this area would 
involve monitoring the physical movement of the student, 
comparing this against the movement as it is carried out by 
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an expert and, if needed, delivering the feedback to the 
student to correct their movements [9]. The monitoring can 
be done either with optical motion capture systems [10] 
and/or wearable inertial sensors [11] (e.g. accelerometers and 
gyroscopes). The latter have the advantage of not requiring 
an infrastructure setup as they are already embedded in most 
wearable and mobile devices. To compare the expert’s and 
learner’s performance, a modelling process is required. 
Although 3D skeletal models are sometimes provided by the 
capture system, usually customised algorithms need to be 
generated for the particular subject being measured [12]. 
Typically, the system feedback is visual, showing the 
movement carried out by the student. There is recent interest 
in providing automated vibrotactile feedback which shows 
promise in helping students correct their motion errors [9]. 

III. APPLICATIONS OF PROXIMITY ANALYTICS FOR 
LEARNING  

A number of learning tasks, modalities and/or 
educational activities can be identified where physicality of 
interactions or learning processes can be supported by 
applications of proximity and location analytics.  

1) F-formations. When working f2f, people do not only 
communicate verbally but also through gestures, postures, 
and other non-verbal cues [13] and may use the space or 
multiple objects. A key spatial aspect in f2f team work are 
the F-formations [14]. These refer to the proximity, location 
and body orientation of collaborators. A recent example of 
this applied surveillance algorithms to track collaborators 
working in a Design Studio suggesting the importance of 
patterns of usage of the collaboration space [15].  

2) Physical social interaction. Data mining techniques 
were used to look for patterns within social networks in 
physical environments in [16, 17]. For tracking face-to-face 
interactions at a wider scale (e.g. within an organisation, at a 
conference or in public events), they developed sociometric 
badges. These can track basic aspects of social interaction 
such as whether two people were talking to each other, levels 
of voice, and movement. These kinds of social proximity 

data, can be exploited through social network analysis for 
finding patterns in settings where collaboration happens not 
only in small groups, but also through small and 
heterogeneous interactions within the community.  

3) Analytics in the classroom. Besides the diversity in 
architectural formats, the classroom still basically allows 
educators to interact with students [18]. Tracking the 
location of the teacher or students in the classroom may 
provide new insights about key events such as the provision 
of feedback, communication patterns, or the identification of 
inactive students. For example, Prieto et al. [19] presented an 
elaborated approach to collect teaching analytics using 
accelerometer data, EEG, audio, video and eye trackers’ 
data, to create ‘orchestration graphs’.   

4) Learning in and from physical spaces. Certain learning 
tasks may require field work that is more commonly 
supported with mobile or augmented reality (e.g. [20]) 
technologies. These scenarios may not only require students 
to access content online but also make sense of it and 
associate it with the physical context where the task unfolds. 
Data obtained from location and usage logs could unveil 
patterns of the processes that students follow or generate 
while learning in the physical space. 

IV. ILLUSTRATIVE STUDY 
In this section we present an educational case study that 

illustrates the feasibility and potential of proximity analytics.  

A. Proximity Analytics for Healthcare Simulation 
Healthcare simulations are integrated into the Bachelors 

of Nursing and Midwifery at the University of Technology 
Sydney. Simulation classrooms are equipped with 5-6 
manikins that produce indicators of a patients’ health, 
respond to actions and can be pre-set to deteriorate over 
time. Each manikin is on a clinical bed which, in this case, 
was equipped with a depth sensor to track students around it. 
Students have to apply their health care knowledge and skills 
to oversee a patient manikin in a hypothetical clinical 
scenario. The challenge here is that, although students are 

 
Figure 1.  Raw proximity data (Column 1) and Heatmaps of student’s activity (1 hour) divided in three parts (T1, T2, T3) of 20 min. each for 

two groups in the same classroom: A and B. Coloured ovals mark clusters of activity near (blue), far (red) and further (orange) from the 
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required to reflect about the task, they do not have access to 
any evidence about how they performed. Teachers 
commonly have to divide their attention among multiple 
small teams working simultaneously and only rely on what 
they can partially observe in each bed to provide feedback.  

One potential that proximity analytics can bring to this 
learning scenario is that a feasible source of student’s 
behavioural evidence is the tracked position of the students 
around the manikin, which can help to describe how group 
members approach the tasks, the processes they follow 
before performing actions on the manikin and behaviour 
according to learners’ roles. E.g., Figure 1 shows the data of 
two groups of 4-5 students each. The first column in Figure 1 
shows the raw data captured in a whole classroom session 
where each data point corresponds to the distance and 
position of each student around the manikin. Up to 30 
proximity data points per second are captured for each 
student standing around the manikin. The sense making of 
these data starts to unfold when adding spatiotemporal 
dimensions. E.g., Figure 1 (columns 2-4) shows heatmaps of 
proximity data with the activity divided in three parts. This 
unveils that Group A stayed mostly away from the patient 
during the first two thirds of the task (see red and orange 
ovals in thirds T1 and T2) to then work near the patient only 
during the last part of the activity (see blue ovals in T3). By 
contrast, Group B followed a very different approach by 
engaging with the patient from the beginning of the task and 
maintaining proximity throughout (see blue ovals in T1-3). 
This preliminary example shows how proximity and mobility 
data, when visualised in intuitive ways, could provoke 
productive reflection on the different student’s strategies.  

V. CONCLUSIONS  
To conclude, we are seeing the increasing availability of 

affordable, mobile, multimodal sensors, coupled with data 
science techniques for the rapid analysis of large datasets. 
This opens the possibility that contexts in which learners’ 
proximity, location and motion are important need not be 
‘digitally cloaked’, that is, invisible to computational 
tracking. While these exciting technologies can certainly 
enable new forms of educational research, academics have 
always had access to advanced forms of sensors, 
computational tools for the study of co-located activity, and 
the expertise to generate representations for academic 
purposes. Arguably, the more profound implications are for 
practice: for the first time, educators and students could have 
access to timely, even real-time, feedback on embodied 
learning activity. For this potential to be realised, however, 
requires not merely the deployment of sensors in learning 
spaces, and the visualisation of the vast amounts of data they 
generate. What is required is a sound understanding of how 
to design data analysis frameworks and corresponding 
techniques that would enable discovery of pedagogically 
significant patterns, which can then be visualised in ways 
that make sense to educators and learners, enabling 
adjustments to their behaviour.  
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