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8.1 Introduction

Market research shows that the share of MEMS microphones in consumer products

continues to grow over the previously ubiquitous electret condenser microphones

(ECMs) [1]. An MEMS microphone is a miniature microphone, usually in the form

of a surface mount device, that uses a miniature pressure-sensitive diaphragm as a way

to pick up sound waves. This diaphragm is produced by surface micromachining of

polysilicon on a silicon substrate or etched on a semiconductor using standard CMOS

processes [2]. MEMS microphones are most commonly used in cellphones, hearing

aids, tablets, laptop computers, video cameras, and more recently in Internet of Things

(IoT) devices, wearables, medical devices, and cars (Fig. 8.1).
Fig. 8.1 MEMS microphone fabricated by Infineon Technologies AG.
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MEMSmicrophones have many advantages over ECMs and are therefore currently

the preferred component choice in new electronic designs. The first obvious advan-

tage is size, with die sizes of complete digital microphones being as small as

0.70 mm2 (Akustica AKU230). MEMS microphones also have a higher performance

density, with much better noise performance compared to an ECM of equal volume.

They have a lower vibration sensitivity, due to the very low surface density of the

membrane, as well as better temperature stability. The sensitivity of an MEMSmicro-

phone may only drift�0.5 dB over its operating temperature, while an ECMmay drift

as much as 4 dB over the same range. ECMs cannot be reflow soldered because the

charge on an ECM’s diaphragm cannot withstand the high temperatures during the

reflow soldering process. MEMS microphones, on the other hand, can be mounted

and reflowed in the same process as most other components on a printed circuit board

(PCB). Having a more uniform part-to-part frequency response than ECMs makes

MEMS microphones more suitable for applications where matched microphones

are needed, such as microphone arrays (Table 8.1).

MEMS microphones can have a simple analog output, like a traditional ECM,

but they can also have a digital output. These digital MEMS microphones output

their audio signal in a serial data stream like I2S or the more often used pulse den-

sity modulated (PDM) digital audio stream. Since MEMS microphones are pro-

duced on a silicon substrate, additional circuitry can easily be added on the

same die or integrated in the small package of the microphone. This allows the

analog-to-digital converters needed for the implementation of an analog micro-

phone in a digital system to be implemented in the microphone itself. As a result,

there is no analog signal chain on the PCB and fewer precautions need to be taken

to combat electromagnetic interference (EMI) in the electronic design. Using dig-

ital MEMS microphones thus results in a lower overall component count and a

smaller footprint, which lowers cost and design complexity. The design also

becomes more flexible because a change in microphone supplier wouldn’t mean

a redesign of the complete analog signal chain.

Because of the reduced amount of components and resulting low power consump-

tion (mW range for a single digital MEMS microphone) and better immunity against

EMI originating from an antenna or capacitive touchscreen, MEMS microphones

become the ideal solution for battery powered wireless devices.

In this chapter we will explore some applications of MEMS microphones used

in wireless battery powered devices. In particular we will examine the use of

MEMS microphones in cell phones, tablets, and laptop computers and why the

implementation of an array of multiple microphones recently became possible

and is beneficial for the user. We will introduce miniature microphone arrays

and the workings of microphone arrays and their applications in general. In

Section 8.4 we will introduce wireless sensor networks (WSNs) and how, with

the aid of MEMS microphones and microphone arrays, they can be used for audio

monitoring. Section 8.5 goes deeper into a specific application of an acoustic WSN

and explains the processing needed to use a miniature microphone array and a

WSN for sound source localization. We finally present our conclusions in

Section 8.6.



Table 8.1 Comparison between a popular MEMS microphone
and ECM (see data sheets for more detailed info)

ECM MEMS

Part number CMA-4544PF-W INMP621

Image

Directionality Omnidirectional Omnidirectional

Output type Analog Digital (PDM)

Sensitivity �44 dBV �46 dBV

Signal-to-

noise ratio

60 dBA 65 dBA

Size 9.7 mm Dia�4.7 mm H 4�3�1 mm

Frequency

range

20 Hz–20 kHz 45 Hz–20 kHz
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8.2 MEMS microphones for mobile applications

Nowadays, MEMS microphones are most commonly used in smartphones. The first

cell phones that used MEMS microphones were introduced in 2003 and one of the big

milestones for the small devices was when Apple started using them, with the intro-

duction of the iPhone 4 in 2010 [3]. Currently, almost all smartphone manufacturers

replaced their ECMs with MEMS microphones. Most smartphones use two or more

microphones; one is usually placed on the front of the device to pick up the user’s

voice, and the other microphone is placed on the back of the device to pick up back-

ground noise. With this setup the device can perform background noise cancelation,
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resulting in a clearer recorded voice signal. The extra microphones also result in

higher quality audio when recording video with the device’s back- or front-facing

camera (Fig. 8.2).
Fig. 8.2 iPhone 6s lightning cable assembly, with two MEMS microphones circled in red.
MEMS microphones have many advantages over ECMs when used in mobile

applications. The small size permits manufacturers to not only implement multiple

microphones in the device itself, but also in the accompanying headphones. Current

headphones already have one MEMS microphone implemented to pick up the user’s

voice, but future models might implement multiple microphones on the wire leading

to the earbuds and in the earbuds themselves, like the model described in a recent pat-

ent filing from Apple [4].

MEMSmicrophones in smartphones and tablets are designed to pick up audio from

the user’s voice when making a phone call and the surroundings when recording

video. The quality of these audio recordings is increasingly improving. Some manu-

facturers even use this superior audio recording quality as their main selling point for

their products. These high quality audio recordings can also be used by different appli-

cations running on the smartphone or tablet [5], for example, evaluated different sound

measurement applications on different smartphones and compared the reported values

with a high quality sound level meter. They concluded that smartphones can be used

for noise pollution monitoring since they give a good representation of the current

sound pressure level of the surroundings. This enables participatory noise pollution

monitoring studies to use mobile phones [6].
8.3 Microphone arrays

Microphone arrays come in different shapes and sizes. They date back over 100 years

and were first used by the military to determine the bearing and location of aircrafts,

ships, and submarines. They consist of multiple microphones positioned in such a way
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that the spatial acoustic information can be properly captured. The fundamental theory

used to process the signals produced by these sensor arrays is based on wave propa-

gation. A microphone array can capture a sound signal from several different points

simultaneously, which allows, with the proper processing, for spatial audio filtering.

This means that with a microphone array, one can choose a point in space and filter out

only the sound waves originating from that direction (Fig. 8.3).
Fig. 8.3 The Norsonic Nor848A 0.4 m diameter acoustic camera, which uses a 128 MEMS

microphone array to graphically represent the surrounding soundscape.
Microphone arrays are currently being used in many different industries. The mil-

itary industry is using microphone arrays to determine the flight path of bullets in

order to determine the location of a shooter [7]. The automobile industry uses micro-

phone arrays to identify the source of wind noise and rattling components on and in a

car during the design phase. Many industries where noise can become a problem or is a

precursor for failure, like wind turbines, rolling stock, airplanes, or appliances with

electric motors or rotating parts in them, can benefit from a microphone array to pin-

point the exact sources of problems. In many cases where a microphone array is being
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used to locate a certain noise source, it will be complemented with a visual camera to

form an acoustic camera. A heat map of the measured sound field by the microphone

array is then overlaid on the video captured by the camera. This forms a video clip that

visually represents the sound power emitting from all the objects in the environment.

The shape and size of the array as well as the positioning and number of micro-

phones used in the array are closely linked to the performance of the microphone

array. Depending on which signal processing technique is used to process the audio

signals coming from the microphones in the array, the distance between microphone

pairs and the overall size of the array will determine the resolution at which an array

can image a certain frequency of sound incident. Delay-and-sum beamforming, for

example, is a signal processing technique that enables directional signal or audio

reception based on the phase difference of the received signals. With this technique,

a smaller distance between microphones in the array will benefit the reception of

higher frequency audio sources, and a bigger distance between microphones will ben-

efit lower frequency signals. Microphone arrays also do not have to be laid out in only

two dimensions. A spherical microphone array can, for example, be used to form a 3-D

visual soundscape of the inside of a car or plane. The positioning of the microphones in

a spherical configuration will enable the direction, or beam, that is being received to

be anywhere in space (Fig. 8.4).
Fig. 8.4 A spherical microphone array by Bruël and Kjær, measuring the soundscape inside a car.
Anarraycanalsovaryheavily in size,with the larger arrays spanningmore than100 m;

they canbe used, for example, for detecting the seismic activity of a volcano [8].However

some arrays are composed of MEMS microphones that are only several centimeters in

diameter. These smaller arrays can, for example, be used in conference rooms to detect

whichperson is currently speakingor in laptopcomputers toonly record the soundcoming

from the user in front of the computer and attenuate all background noise.
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8.3.1 Miniature MEMS microphone arrays

Because of the recent miniaturization and price drop of good quality microphones in

the form of MEMS microphones, a new class of microphone arrays is rapidly devel-

oping. Previously, high-quality microphone arrays were comprised of multiple,

expensive—several thousands of euros—and omnidirectional microphones with a

perfectly flat frequency response. Every microphone in these arrays also needed a

slew of high quality processing tools like phantom power supplies, preamplifiers, high

quality cables, and analog-to-digital converters to make the array function. All this

made microphone arrays very expensive and labor intensive to set up and use.

MEMS microphones are cheap, (less than one euro in volume) small, and have a

decent signal-to-noise ratio (SNR) and frequency response. These features enable

the production of miniature arrays that are several centimeters in diameter, on which

the same signal processing techniques can be applied as their bigger counterparts.

These miniature arrays can easily be mass produced, since a PCB can be produced

in the desired array shape and the microphones can be mounted with standard

PCB manufacturing techniques. Many consumer products like laptop computers,

cell phones, and video cameras are already outfitted with more than one MEMS

microphone and perform basic background noise cancelation with this limited array.

Some laptop computers even use a linear array of several microphones along the top of

the screen to only pick up speech coming from the user by using beamforming

techniques.

Miniature MEMS microphone-arrays enabled the production of complex, small,

stand-alone, and battery powered acoustic sensors. Processing of the digital audio sig-

nal coming from a miniature microphone array can easily be accomplished by a ded-

icated digital signal processor (DSP) (eg, STA321MP from STMicroelectronics) or a

small FPGA. For example, Zhang et al. [9] designed several small—multiple centi-

meters in diameter—MEMS microphone arrays in order to identify and detect the

direction of outdoor moving vehicles.

These cheap miniature arrays can easily be produced in volume and combined with

a WSN to form an acoustic noise WSN that can, because of its distributed nature, bet-

ter locate noise sources [10].
8.4 Acoustic noise WSNs with MEMS microphones

Acoustic noise WSNs measure sound in their surrounding environments to produce a

soundscape with relatively high spatial and temporal resolution. They provide envi-

ronmental data with high spatio-temporal resolution at the expense of data quality

using cheap sensor nodes in large numbers. MEMS microphones are usually the

acoustic sensor of choice in WSN implementations due to their low cost, small form

factor, and relatively low power consumption. These characteristics are critical in

battery-operated sensor nodes where unit costs and power consumption must be

kept low.



184 Wireless MEMS Networks and Applications
8.4.1 WSNs

AWSN consists of a group of wirelessly interconnected, spatially distributed computers

using sensors and actuators to assess and interact with their surrounding environment.

These computers, known as sensor nodes, are usually resource-constrained, small-form-

factor devices designed to run on battery power. Typically, they communicate with a

remote gateway via an uplink connection to a network backbone or via their closest

neighbor in a wireless mesh network (Fig. 8.5).
Sensor node

Gateway
sensor node

Fig. 8.5 Sensor nodes in a

wireless sensor network

(WSN) measure

environmental parameters

and transmit the data back to

a network gateway where it

is aggregated, stored, and

processed.
WSNs were first proposed for military applications by the Department of Defense

of the United States as a tool to detect and track enemy troops. Nowadays, they are

applied in several application domains such as the IoT, indoor tracking, environmental

monitoring, home automation, and industrial automation [11,12].

Sensor nodes are the main components of a WSN, and their functionalities are [13]

as follows: data acquisition from different sensors; buffering and caching of sensor

data; data processing; self-testing and monitoring; reception, transmission, and

forwarding of data packets; and coordination of networking tasks. Sensor nodes are

usually battery operated and deployed in large numbers in difficult to reach places.

These constraints steer the design of sensor nodes towards maximum power efficiency

and minimum unit cost.

Sensor nodes, depending on their resource usage, can be divided in three broad cat-

egories [13]:

l SBC (Single-Board Computer): These nodes have enough computing power to run full-

fledged operating systems such as Linux orWindows. Their power consumption ranges from

a few hundred milliwatts (eg, Raspberry Pi) to several watts (eg, ALIX 3D3 from PC

Engines). While deployed on-the-field, they rely on external energy sources such as solar

power or mains.
l High-end ESM (Embedded Sensor Module): These nodes are based on system-on-chip (SoC)

microcontrollers where the CPU, RAM, flash, and several other peripherals (ADC, DAC,

GPIOs, RF, etc.) are embedded in a single die. They have enough computer resources to

run embedded versions of well-known operating systems. These devices typically consume

several hundred milliwatts of power (eg, Intel Edison) and are typically expected to run on

batteries for short periods (weeks, months).
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l Low-end ESM: These nodes are resource constrained devices (a few kilobytes of RAM, CPU

running typically at frequencies below 100 MHz) designed to run on batteries for long

periods (months, years). They are based on low-power, low-cost SoC microcontrollers

(eg, TI CC2538, Freescale MC13234) that directly implement power efficient RF commu-

nication stacks such as the IEEE 802.15.4 [14]. They require resource-optimized operating

systems such as TinyOS or Contiki and are configured to the network’s specific application.

Their power consumption is typically in the order of a few milliwatts.

Low-end and high-end ESMs are usually found in IoT applications and high

spatio-temporal resolution WSNs, while SBCs nodes usually serve as network

sinks or as data collection nodes where intensive data processing is required

on-site (Fig. 8.6).
(A) (B) (C)

Fig. 8.6 Sensor nodes can be divided into three categories: single-board computers (SBC)

(A), high-end ESM (embedded sensor module) (B), and low-end ESM (C).
8.4.2 Audio monitoring

In the context of this chapter, audio monitoring is the task of collecting and recording

sounds from the surrounding environment with the goal of understanding their origins,

processes, and effects. These sounds may either be anthropogenic, such as acoustic

noise pollution in urban or industrial environments, or naturogenic, such as sounds

originating from volcanic activity or wildlife.

Audio monitoring is a critical component of acoustic noise pollution studies

in urban environments. Noise pollution is a well-known human stressor and has been

linked to health problems such as cardiovascular disease, stress, and sleep deprivation

[15,16]. Audio monitoring in urban areas helps to determine the where, when,

how much, and who of noise pollution by creating high spatio-temporal resolution

soundmaps. Examples of such studies are the RUMEUR network in France [17],

Sensor City in The Netherlands [18], and IDEA in Belgium [19]. Additionally,

audio monitoring has been used as a proxy measurement for various sources of air

pollution [20].

On the naturogenic side, audio monitoring contributes to the tasks of ecosys-

tem monitoring and wildlife observation [11,21]. Audio monitoring can be used to

infer the presence, state, and movements of wildlife in a geographical area. How-

ever, due to the wide audio spectrum of wildlife, naturogenic audio also



186 Wireless MEMS Networks and Applications
encompasses infrasound (elephants) and ultrasound (bats, dolphins) [21]. In this

domain, audio monitoring is typically used to collect geotagged sounds produced

by wildlife in its natural habitat to be later, by a human expert or a machine

learning technique, curated and classified. Its main advantage in ecosystem mon-

itoring and wildlife observation is its non-intrusiveness, while its main disadvan-

tage is the requirement of high spatial resolution and resource-heavy data

processing.
8.4.3 WSNs with MEMS microphones

Traditionally, applications and scientific studies that required geographical audio

monitoring deployed trained personnel or volunteers in situ to manually collect audio

data [22]. WSNs significantly automate and improve this process due to their capacity

to automatically collect and distribute data in real time with high spatio-temporal

resolution.

To provide reliable, high quality sound measurements, acoustic WSNs usually

relied on professional measurement microphones to collect audio data [17,18]. These

microphones are typically calibrated in a certified acoustic laboratory and exhibit a

relatively high dynamic range and SNR. Their price ranges from several hundred

to several thousand euros.

Acoustic WSNs relying on professional measurement microphones have a high

cost per sensor node, and consequentially, their collected sound measurements have

a rather poor spatial resolution. However, for most audio monitoring applications, the

dynamic range and SNR of low-cost electret and MEMS microphones is sufficient,

and their relatively lower data quality and reliability could be compensated by their

high numbers and high spatial resolution [23,24].

MEMS microphones have several characteristics that are ideal for acoustic noise

WSNs: compactness, low power consumption, and sufficiently high SNR and

dynamic range [25,26]. Moreover, these characteristics have been improving in the

last few years, with commercially available MEMSmicrophones reaching SNR levels

up to 65 dB [27]. These levels are comparable or better than most low-cost electret

microphones.

MEMSmicrophones can be divided in two categories: analog and digital. Analog

MEMS are usually smaller and consume less power than their digital counterparts

but require the addition of an analog-to-digital converter (ADC) plus other compo-

nents of the audio measurement chain. Digital MEMS microphones incorporate

several audio measurement chain components (ADC, preamp, signal conditioning

filters, etc.) within the same enclosure and output sound data either using I2S or

PDM. Considering the extra resources required for an external ADC and signal

conditioning, digital MEMS microphones are more power and space efficient than

analog ones [25].

Tan and Jarvis [26] used an analog MEMS microphone, ADMP401, to build an

energy harvesting acoustic sensor node. The main motivation was the extremely

low power consumption of the sensor, below 250 μA [10]. selected a digital MEMS
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microphone, the ADMP521, to build a 52-microphone array on-board a sensor node in

a WSN. The main motivation was the savings in power (the microphone consumes

900 μA while active and 1 μA in sleep mode), computing resources, and space.
8.5 Sound source localizationwithWSNs andMEMS arrays

8.5.1 Microphone array processing

ManyMEMS-based applications such as sound-source localization need devices com-

posed of multiple MEMS microphones. This leads to a high number of inputs and out-

puts (I/O) that need to be processed in real-time. Standard microcontrollers and DSPs

offer a limited number of I/O. Furthermore, the complexity of the signal processing

system drastically increases with the amount of MEMS involved, which becomes too

computationally intensive for traditional signal processing devices. The scalability

and processing problems can be solved using programmable logic devices such as

a field programmable gate array (FPGA). FPGAs have a high number of I/O available

and offer massive parallel computational power, which simplifies and accelerates the

signal processing. Consequently, FPGAs are often considered to process the output of

analog or digital MEMS microphone arrays.

8.5.1.1 What is an FPGA?

An FPGA is a semiconductor device composed of logic blocks interconnected via pro-

grammable connections. The logic blocks consist of look-up tables (LUTs) with a

fixed number of inputs and are constructed over simple memories, SRAM or Flash,

that store Boolean functions. Each LUT is coupled with a multiplexer and a flip-flop

register in order to support sequential circuits. Likewise, several LUTs can be com-

bined for implementing complex functions.

Today’s FPGAs are powerful devices with support for dozens of I/O standards such

as I2C, SPI, CAN, PCIe. I/Os in FPGAs are grouped in banks where each bank is able

to independently support different I/O standards.

FPGAs can be reprogrammed to the desired application or functionality require-

ments. The hardware description elaborated by the designer is used by the vendor’s

synthesizer in order to find an optimized arrangement of the FPGA’s resources that

implements the described functionality. This feature distinguishes FPGAs from

application-specific integrated circuits, which are custom manufactured for specific

design tasks.

Originally, FPGAs have been used in network packet analysis and signal

processing. Thanks to high-speed embedded resources such as DSP slices and fast

memories, FPGAs are now also utilized for algorithm acceleration either as coproces-

sors or standalone systems. In fact, theoretically, there is no limitation in the calcu-

lation speed of an FPGA since it performs parallel processing. Only the available

FPGA resources determine the amount of operations that can be implemented.
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8.5.1.2 FPGA-based systems using MEMS microphones arrays

As described in the previous section, digital MEMS microphones are commonly cho-

sen to build microphone arrays. This kind of microphone moves the analog-to-digital

conversion function from the DSP or the FPGA into the chip. Digital MEMS micro-

phones integrate the transducer element together with an amplifier and an ADC. The

encoded output format of digital MEMS microphones is often a PDM signal, which

can be described as an oversampled 1-bit audio signal. This clocked digital signal is

less prone to external noise than an analog signal and also enables two microphones,

with the help of multiplexing, to use the same data and clock line. The protection from

interfering signals makes digital MEMS microphones a preferred solution for hand-

held devices, for which analog audio signals may be susceptible to interference. Fur-

thermore, the use of digital MEMS microphones reduces the complexity of the hard-

ware since they do not require external amplifiers. However, the PDM signal needs to

be demodulated to an analog form to be perceptible as audio, or it needs to be

converted to multi-bit pulse code modulation (PCM) to be digitally analyzed Lewis

[28]. A common strategy, detailed by Hegde [29], consists of multi-filter stages for

the PDM demodulation and PCM conversion. The FPGA’s capacity for highly parallel

arithmetic architectures makes it well-suited for custom data path processes such as

delay-and-sum beamforming algorithms.

One example of an MEMS microphone array exploiting FPGA’s features is

detailed by Salom et al. [30]. They propose a beamforming-based acoustic system

for localization of the dominant noise source. The signal acquisition consists of a

microphone array composed of up to 33 MEMSmicrophones, while the PDM demod-

ulation and the beamforming is implemented in an FPGA. The authors implement the

PDM demodulation described by Hegde [29]. The PDM demodulation starts with a

PDM-to-PCM conversion by using cascaded integrator-comb (CIC) filters. This com-

ponent is followed by a half-band low-pass decimation filter that reduces the sampling

frequency. A final low-pass FIR filter is needed to remove the high-frequency noise

introduced by the sigma-delta converter, which is integrated in the digital MEMS

microphones. The implementation in the FPGA is completed with the delay-and-

sum beamforming, measuring 60 angles, and a polar map is generated for directivity

pattern presentation.

Another example is detailed by Perrodin et al. [31], where digital MEMS micro-

phones are combined with FPGAs for robot-based applications. The authors propose

an automated microphone array shape calibration to accurately estimate the array ele-

ments in order to face the noisy and reverberant environment of real-world robotic

operations. Such calibration is based on time differences of arrival (TDOA) of moving

sound sources. The FPGA performs the pre-processing stage proposed by Hegde [29],

composed of a CIC filter and two half-band filters in order to downscale the sample

rate, followed by a low-pass FIR filter to remove the high-frequency noise. The high

amount of I/O pins available in the chosen FPGA allows for the connection of up to

128 digital MEMS microphones. Furthermore, thanks to the computational power of

FPGAs, the pre-processing of the 128 digital MEMS microphones performed on the

FPGA enables real-time operations.
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Despite the fact that the authors in Havránek et al. [32] do not provide detailed

information, the authors propose a calibration methodology for microphone arrays

using an FPGA. The FPGA however, is one more component of a large system

used to validate their methodology.

Digital MEMS microphones have the potential to offer similar performance to

high-quality analog microphones for some applications. A comparison between

digital MEMS microphones and analog microphones is presented by Zwyssig

et al. [33]. They describe the design and implementation of an eight-element

digital MEMS microphone array for distant speech recognition, which is compared

to an analog equivalent composed of eight high-quality analog microphones. The

results show that the absolute difference in word-error-rate (WER) is around 14%

worse for the digital array, but it can be reduced to 4.5% using recognition

techniques.

An alternative approach is proposed by Sanchez-Hevia et al. [34], where the

authors use an FPGA to implement an acoustic camera. Instead of applying traditional

solutions using CIC filters to demodulate the PDM signals, the authors propose their

own custom designed demodulator filter, a cascaded recursive-running sum filter.

Their fine-tuned filter reduces the hardware complexity while offering the required

filtering needs. As result, their FPGA-based acoustic camera generates real-time video

representing the received sound pressure.

A digital MEMSmicrophone array is proposed by Tiete et al. [10] for sound-source

localization. The authors propose a FPGA-based implementation with a different

strategy to process the 52 microphones that comprise the array. Instead of

implementing individual filters for each microphone, the authors propose the execu-

tion of the delay-and-sum beamforming algorithm over the PDM signals. The output

of the delay-and-sum, which is no longer a PDM signal, is filtered by windowing and

is processed at the frequency domain.

Fig. 8.7 depicts the different strategies for PDM signal processing of digital MEMS

microphone arrays. There is a clear trade-off in terms of hardware resources when

applying beamforming before or after the PDM demodulation. The 1-bit data storage

of the PDM signals when beamforming before the PDM demodulation promises to be

an interesting area and power saving technique. Because only one PDM demodulation

stage is needed, only one filter would be required instead of one cascade of filters per

microphone. However, the output of the delay-and-sum computation is not a pure

PDM signal, and this might increase the filter stage complexity.
8.5.2 Audio data transport in WSNs

Most of the examples below use wired connections between the sensor arrays and the

processing devices. However, this is not an option for WSNs. Several challenges need

to be acknowledged when considering audio transmission over wireless protocols.

The main challenges could be grouped by compression techniques, security, and

power consumption of the communication.

SinceWSNs are mainly composed by battery-based nodes, the power consumption

becomes a crucial factor. Many real-time audio applications over sensor networks



Fig. 8.7 Signal processing strategies for MEMS microphone arrays implemented on FGPAs.

190 Wireless MEMS Networks and Applications
have strong QoS requirements of delay and throughput. In such applications, the rou-

ting protocol has a predominant role in terms of energy [35]. An energy-efficient pro-

tocol not only needs to guarantee a reliable communication, but also low power

consumption by minimizing the communication. Currently, several multipath routing

tactics such as IEATH [36], QEMPAR [37] or CMQ [38] have been proposed for

WSN for real-time applications. These multipath algorithms consider performance

metrics of WSNs such as delay, energy consumption, and bandwidth while keeping

the reliability of the communication system.

Several audio applications require security protection in order to avoid malicious

intrusions while delivering audio data in WSNs. Audio watermarking is an effective

authentication technique that embeds a small watermark into the original audio data.

A quality-driven and energy-efficient watermarking system for audio transmissions in

WSN is proposed in Wang et al. [39]. The authors propose embedding the watermark

into the middle sub-bands, and it is robust against compression distortion. Such tech-

niques reduce the power consumption and the data overhead, since the authentication

protocol is embedded in the transmitted data.

Despite the existence of many audio compression techniques, only few of them tar-

get audio compression in WSN. An interesting distributed compression model for

WSN [40] combines compressed and uncompressed audio data depending of the

node’s role. The compressed audio is decoded through correlations between the com-

pressed and uncompressed data, achieving up to 40% of energy savings. Other tech-

niques propose wavelet-based compressions [41,42]. An interesting power-efficient
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compression technique based on wavelet transformation is proposed by Dutta et al.

[43]. Instead of the use of correlation, the authors proposed a dynamic difference

detection technique, which eliminates the temporal correlation. Thus, instead of send-

ing raw sample data, only the difference between two consecutive sample values is

sent, reducing the data transmission cost. Such combination of wavelet transformation

with difference detection reduces the energy consumption while preserving the

decoding quality.
8.5.3 Data fusion

In a WSN that performs sound source localization, each sensor node collects only a

portion of the information necessary to locate one or multiple sound sources. The

information collected in each node must be transmitted and routed to a network gate-

way, where it will be aggregated or fused. This process, known as data fusion, inte-

grates the partial data collected in each node and outputs an estimation of the

geographical location of all detected sound sources. The data fusion algorithm

depends on the overall localization technique (eg, triangulation) and is usually per-

formed in a centralized high-performant network node.

As mentioned in the previous section, transmitting and collecting raw audio data is

usually too resource-intensive for most sensor nodes equipped with microphone

arrays. Consequently, each sensor node pre-processes the array’s audio output and

estimates the location or bearing of nearby sound sources. This estimation is then

transmitted over the WSN to a network sink.

Astapov et al. [44] describe a WSN where each node has a two-microphone array.

This array is used to estimate the direction of arrival (DOA) of a nearby sound source.

The DOA, a real value representing an angle from �90 to 90 degrees, is transmitted

over the network to a sink. The position of each possible sound source is then trian-

gulated based on all collected DOAs and the fixed location of each node. The authors

do not specify the accuracy of this method in this particular scenario but suggest using

it to constrain the sound source search area for more resource-intensive microphone

array localization algorithms such as steered response power with Phase transform

(SRP-PHAT) [45].

Tiete et al. [10] use a 52-microphone array in each node to estimate the bearing

of nearby sound sources. In each node, the array beam is steered in a 360 degrees

sweep and the power at each angle in the sweep is measured. The result is a tuple of

n power measurements, where n is the number of angles used to perform the

sweep–the optimal value of n was determined to be 64 angles. The tuple, also

known as the polar steered response power (P-SRP), is transmitted over the net-

work to a sink.

At the sink, the P-SRP, together with the node’s known position, is used to generate

a probability map of the location of detected sound sources (Fig. 8.8). The probability

map generated by each node is a matrix with elements ranging from 0 to 1. The matrix

represents the geographical area covered by the WSN, and each element in the matrix

represents the probability that a sound source is located at that point. The fusion algo-

rithm simply adds the probability map generated by each node and finds all local
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maxima in the resulting aggregated map. The local maxima represent the location of

detected sound sources. The authors reported an experimental location accuracy

below 10 cm in a 25 m2 area.
8.6 Conclusion

MEMS microphones are ideal for wireless applications such as mobile phones, audio

monitoring WSNs, and sound source localization WSNs. These applications typically

require low power consumption, miniature sizes, and relatively high data quality.

MEMS microphones now provide SNRs of up to 65 dB, with a PCB footprint from

8 to 12 mm2. They consume very little power, in the range of a few milliwatts, and

some digital versions support sleep mode, where power consumption drops to a

few microwatts. Digital MEMSmicrophones include in one package almost the entire

audio measurement chain, providing high area and power efficiency at a low cost

(below 1 euro for some models). These characteristics will most likely keep improv-

ing, enabling the adoption of audio capturing and processing in IoT and WSN

applications.
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