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ABSTRACT Measuring manual-labor performance has been a key element of work scheduling and resource
management in many industries. It is performed using a standard data system called Time and Motion
Study (TMS). Many industries still rely on direct human effort to execute the TMS methodology which
can be time-consuming, error-prone, and expensive. In this paper, we introduce an automatic replacement
of the TMS technique that works at two levels of abstraction: primitive and activity actions. We leverage on
recent advancements in deep learning methods and employ an encoder-decoder based classifier to recognize
primitives and a continuous-time hidden Markov model to recognize activities. We show that our system
yields results competitive with those obtained with several common human action recognition models.
We also show how our proposed system can help operational decisions by computing productivity indicators
such as worker availability, worker performance, and overall labor effectiveness.

INDEX TERMS Time and motion study, deep learning, action recognition, manual labor, performance,
human effort.

I. INTRODUCTION
Measuring the performance of manual labor has been a
key element of work scheduling and resource management
in many industries, with particular relevance in areas such
as manufacturing, construction, and logistics, where human
labor can account for up to 50% of the total project cost [14].
Furthermore, it has been proposed that the biggest inef-
ficiency losses in the workplace are due to human-effort
waste [34]. Continuously monitoring the workforce to pre-
cisely quantify and benchmark labor productivity allows us
to take corrective actions to mitigate these losses.

Measuring the performance of manual tasks can improve
their efficiency and effectiveness by characterizing and sim-
plifying their design; assessing and measuring productivity;
and assisting in ergonomic evaluations and in calculations of
the distribution of manual tasks [25].

Attempts to carry out this measurement usually rely on
defining a hierarchy of worker tasks, abstracting them into
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levels, which allows a more organized observation. One of
such abstractions consists of hierarchically differentiating
between primitives and activities [26]: the former defined as
the movement of a specific body part, and the latter being the
combination of successive primitives. A worker (e.g., during
a time and motion study [11], [24]) or a group of workers
(e.g., during work sampling [10]) is selected to collect data,
with post processing often being required. Variations of this
methodology have been applied in various fields such as
manufacturing [1], [6] and health [10], [17].

Many industries still rely on human effort to measure
manual-labor performance by direct and detailed observation
using a stopwatch and determining the times and motions
used for specific tasks. Clearly, this method can be time-
consuming, error-prone, and overall expensive.

This human-in-the-loop approach presents three problems:
(P1) it is not effective for recording activities of great com-
plexity as those commonly seen in industry [19]; (P2) it
is frequently difficult for analysts to distinguish between
primitives and activities [25]; and (P3) it is a costly effort
prohibiting continuous measurement.
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FIGURE 1. Proposed worker primitives recognition system consisting of two RNNs: one composed
by a Bi-GRU network that processes skeletal data; and the other by a VGG16 network that extracts
features around the left and right hands, which are concatenated and passed through a linear layer
before being processed by a Bi-GRU network. The vectors c and c̃ extracted from both RNNs are
concatenated and fed to a linear classifier.

A. LITERATURE REVIEW
In order to tackle the aforementioned problems, research has
aimed at replacing human observers with automatic proce-
dures providing a continuous stream of information (attenu-
ating P1), a finer understanding of worker activities (solving
P2), and reduced costs and increased speeds (attenuating P3).
These works have primarily focused on the use of automatic
sensor- and vision-based solutions [18], [20], [35] and since
each primitive and activity produces characteristic patterns,
machine-learning algorithms are used to learn and identify
worker tasks.

Vision-based approaches have gained interest over wear-
able sensor-based ones, since they provide data with a less
intrusive collection methodology [12], [31], [39]. These
methods have been predominantly based on the use of depth
sensors (e.g., Kinect) to build a 3D skeleton model [8], [15].
However, the use of such devices admits only minimal dis-
turbances, which can result in high implementation costs and
noisy measurements. The aforementioned methods have only
been shown to be successful in controlled-laboratory environ-
ments and, therefore, not suited for tackling the intricacies of
industrial workplaces.

The methods described in [40] and [38] are the most
similar to our own. In [40] an automatic system is proposed
to monitor construction activities: they performed action
recognition using dense trajectories and achieved an accu-
racy of 59% but their method is computationally inten-
sive and may not scale well to real-life scenarios. In [38]

an automatic system is proposed to monitor piece assem-
bling activities: they performed action recognition using a
hierarchical-clustering based convolutional neural network
(CNN) model and achieved an accuracy of 56%; however,
the dataset used to evaluate their method was fairly limited,
containing only hands, and the method required extensive
preprocessing, limiting its real-life use. Existing models in
the literature do not incorporate the context of the tools the
worker is using, which can help to discriminate actions with
high inter-class similarity. We believe that, to the best of our
knowledge, our work is the first one to measure manual-labor
performance using two levels of abstractions, thus increasing
accuracy and scalability and facilitating the calculation of
performance metrics.

B. RESEARCH CONTRIBUTION
In this paper, we propose an automatic vision-based approach
for worker-task recognition in situ, at two levels of abstrac-
tion: primitives and activities. Our recognition system
(Section II) integrates a 2D human-pose estimation neural
network with a 3D human-pose inference module, to extract
skeletal data fromRGB videos of workers performing various
tasks. Then, it uses this pose data to extract features around
the workers hands by using a CNN. Finally, it combines the
3D pose and extracted features into a sequence that is fed to
a Gated Recurrent Unit (GRU) to classify the primitives (see
Figure 1). These primitives are passed to a continuous-time
hidden Markov model (CT-HMM) to classify the activities.
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We show that our proposed system is competitive with
commonly used models for human action recognition; and
that it can be used to measure the performance of manual
labor (Section III), becoming a suitable replacement for the
human-in-the-loop methodology.

The contribution of this paper is threefold. (1) We present
a hierarchical human recognition methodology that works at
two levels of abstraction (primitives and activities). (2) We
integrate context from objects, differentiating our method-
ology from other approaches that have primarily focused
on skeletal or sensor data. (3) We show how our proposed
system can be used to make operations-engineering decisions
by estimating standard times and calculating performance
indicators such as: worker availability, worker performance,
and overall labor effectiveness.

II. METHODOLOGY
In this section, we introduce our methodology, in which
primitives are segmented and learned by an RNN classifier,
while activities are learned by a CT-HMMclassifiermodeling
the relationship among primitives.

There are two general assumptions for our methodology:
(1) only one person must be performing an action at a time,
and (2) actions must be recorded in the same vicinity. For
primitive recognition, the assumption is that all actions per-
formed by workers can be represented with our primitives
taxonomy (described in Section III). For activity recognition,
the assumption is that the distribution of times and sequences
for primitives is time invariant.

A. PRIMITIVES RECOGNITION
Primitives recognition is comprised of three steps: 3D human
pose estimation, object identification for context feature
extraction, and primitives classification.

1) 3D HUMAN POSE ESTIMATION
Human pose consists of 2D or 3D coordinates of human
joints or keypoints—such as elbows, wrists, and shoulders—
resulting in a compact and lightweight representation of the
human body.

We estimate 2D pose data for every video frame using
the OpenPose framework [4]: a bottom-up approach which
first detects key body parts and then uses Part Affinity
Fields (PAF) to associate the detected body parts. We infer
3D poses from 2D poses to obtain a richer representation,
using a residual feedforward network, based on the work
in [23]. Tomaintain the aspect ratio of the poses, the 2D inputs
are normalized by subtracting the mean of frame at time t
and dividing by the maximum standard deviation σ (t)

=

max(σ (t)
x , σ

(t)
y ) before entering the network.

2) OBJECT IDENTIFICATION FOR CONTEXT FEATURE
EXTRACTION
Skeleton-based recognition usually struggles to classify
actions related to the use of objects. To overcome this issue,
we use the pose to locate the worker hands and create a box of

100×100 pixels around them from which we extract features
that represent the objects the worker is holding. We use the
VGG-16 architecture [32], a commonly-used feature extrac-
tor composed of a stack of convolutional filters with small
receptive fields of steadily increasing depth. Figure 2 shows
the t-SNE [22] embeddings for the features extracted around
the left and the right hands. This graph shows that the fea-
tures of primitives in which the worker is holding a product
or a tool are clustered together. For visualization purposes,
we removed from the graph those features representing prim-
itives in which nothing is being held, since they appeared
dispersed.

3) PRIMITIVES CLASSIFICATION
In order to classify primitives, we use an RNN classifier based
on the encoder–decoder framework [7], [33]. For the encoder
we use two RNNs: one for the human pose data and the other
for the extracted hand features. For succinctness, we only
describe the procedure for one encoder and use the sequence
element xt for interchangeably representing the hand features
or the human pose data at time t . The encoder reads the input
sequence x = (x1, · · · , xT ) and transforms it into a vector c,
such that

ht = f (xt , ht−1), and

c = q({h1, · · · , hT }), (1)

where ht ∈ Rn is the hidden state at time t , c is a vector
generated from the sequence of hidden states, and f and q
are nonlinear functions [2]. In this work, we use the GRU
architecture as f and the self-attention mechanism devised
in [37] as q, unlike other works that use q({h1, · · · , hT }) =
hT [33], which forces the network to compress all infor-
mation about the sequence into a single vector. In order to
reduce compression of information in the vector c, we use
a self-attention mechanism that works by calculating energy
vector αi as

αi = SOFTMAX
(
hᵀTWhi
n

)
, (2)

where matrix W is a square matrix whose dimensions cor-
respond to the feature size of hi and the energy αi reflects
the importance of the annotation hi with respect to the final
hidden state of the sequence used for classification. To obtain
the vector c, we perform the following linear combination c =∑

i αiW̃hi. Intuitively, this process implements an attention
mechanism in the decoder, that allows it to decide to which
parts of the sequence it pays attention to. The matrices W
and W̃ give extra capacity to the model, relieving the encoder
from having to compress all information of the sequence into
a fixed-length vector.

The decoder is trained to predict the class yt given the
vector c, which is modeled as p(yt |c) = g(c); here g is a
nonlinear, potentially multi-layered, function that outputs the
conditional distribution of yt .

We use the bi-directional variant of RNNs (Bi-RNN) [30]
because we want vector ht to summarize the preceding and
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FIGURE 2. (a) t-SNE embedding of VGG16 features extracted around the left hand. (b) Idem for the right hand. (Pre-print note: Best viewed in color.)

the following elements. A Bi-RNN consists of forward and
backward RNNs: the former reads the input sequence in
ascending order (from x1 to xT ) and outputs forward states
(
−→
h1 , · · · ,

−→
hT ); while the latter reads the input in descend-

ing order (from xT to x1) and outputs backward states
(
←−
h1 , · · · ,

←−
hT ). The final state of the Bi-RNN is obtained con-

catenating the forward and backward states as ht =
[
−→
ht ,
←−
ht
]
.

Figure 1 depicts the proposed methodology.

B. ACTIVITY RECOGNITION
While primitives are being extracted from video data, the sys-
tem concurrently learns hierarchical-structure information
and the way activities are composed by the sequencing of
these primitives.

1) MODEL DESCRIPTION
We model the higher-level structure of activities by using
a CT-HMM, i.e. a HMM in which the transitions between
hidden states as well as the observations can occur at arbitrary
times (see Figure 3).

In our model observable data o depends on the hidden state
s via an observation model p(o|s), where the observations
O = {ot0 , · · · , otV } are obtained at irregularly sampled con-
tinuous points in time {t0, · · · , tV }; and multiple transitions
between hidden states can occur before an observation is
obtained. A CT-HMM is defined by the set λ = {b,π ,Q};
where b is the observationmodel p(o|s);π is the initial hidden
state distribution; andQ is a state transition rate matrix whose
elements qij describe the rate at which the process transitions

FIGURE 3. In a continuous time hidden Markov model both the hidden
states and the transition times are unobserved. Furthermore, multiple
hidden states transitions can occur before an observation is obtained.

from state i to j for i, j ∈ {1, 2, · · · , S} and i 6= j, and
whose diagonal elements are set such that qi =

∑
i6=j qij and

qii = −qi.
The transient behavior of the hidden states is as follows:

the CT-HMM stays in the hidden state stk = i for time 1k =

tk+1 − tk exponentially distributed with rate parameter 1/qi.
Upon transitioning, the hidden state shifts to state stk+1 = j
with probability qij/qi. The transitions over hidden states
factor into two distributions: an exponential distribution for
the inter-occurrence time when the next transition occurs,
and a multinomial distribution to determine where the state
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transitions. The distribution P(t), over hidden states at some
future time t , can be computed as exp(Qt), which already
takes into account all possible intermediate state transitions
between unobserved i and j.

The sufficient statistics of the model are the cumulative
amount of time τi the model is in hidden state i and the
number of times nij the model transitions from hidden state
i to j. Given a current estimate of the model parameters λ =
{b,π ,Q} and observationsO, we can write the log-likelihood
for the model as [21], [27]:

logL(λ;O) =
S∑
i=1

S∑
j=1,i 6=j

{
log(qij)Est

[
nij|O,Q

]
− qiEst [τi|O,Q]

}
+

S∑
i=1

Est
[
1{st0=i}

]
logπi

+

V∑
v=0

S∑
i=1

Est
[
1{stv=i}

]
log p(otv |b), (3)

where 1{A} is the indicator function for event A and expec-
tations are computed using Monte Carlo methods. The
log-likelihood in Eq. 3 is composed of four terms: a multi-
nomial distribution to determine the state transitions nij;
an exponential distribution for the inter-occurrence time τi,
an initial state distribution π , and an observation model
log p(otv |b). The first two terms are unobserved, since a
realization of the CT-HMM is observed only at discrete and
irregular times—which are distinct from the inter-occurrence
times—and since multiple hidden states transitions can occur
before an observation is obtained. The last two terms can be
estimated using the discrete time HMM formulation (for a
detailed treatment the reader is referred to [3]). In the next
two sub-sections, we focus on the estimation from data of the
first two terms nij and τi, as well as on the transition matrixQ.

2) MODEL TRAINING
We describe the procedure to train the CT-HMM following
the formulation in [21], [27], which finds maximum-
likelihood estimates for the parameters using the expectation-
maximization (EM) algorithm.

M-step: similar to the formulation of the discrete time
HMM (the reader is referred to [3]) except for element

qij =
Est

[
nij|O,Q

]
Est [τi|O,Q]

. (4)

E-step: consists in estimating expected values for the suffi-
cient statistics and the indicator function, which we calculate
using a continuous variant of the Baum-Welch algorithm [21].
Let αtv (i) and βtv (i) be the forward and backward likelihood
vectors for observed data, respectively; defined as follows:

αt0 (i) = πibi(ot0 ),

αtv+1(i) =

 S∑
j

αtv (j)e
Q1k

 bi(otv+1 ),

βtV (i) = 1, and

βtv (i) =
S∑
j

eQ1kbj(otv )βtv+1 (j). (5)

By using the forward and backward likelihood vectors,
the expected value for the indicator function becomes

Est
[
1{stv=i}

]
=

αtv (i)βtv (i)∑S
i=1 αtv (i)βtv (i)

. (6)

The expected value for the total amount of time the model
remains in a hidden state can be calculated by dividing the
time-frame in V − 1 intervals [tv, tv+1), and computing the
expected time spent per interval

Evst [τi|O,Q]

=
1

αtv (i)βtv (i)

∫ tv+1

tv
αtv (i)e

Q(t−tv)eQ(tv+1−t)βtv (i)dt, (7)

and adding those expected values together. Moreover, a for-
mula similar to Eq. 7 but scaled by qij can be found for the
expected number of times the model transitions from hidden
state i to j. Classification of an activity is done using an
ensemble-like methodology by training a CT-HMM for each
category and computing the optimal weights for the ensemble
using a held-out dataset.

III. CASE STUDY: ORDER PREPARATION IN A
DISTRIBUTION CENTER
Order preparation in a distribution center is the operational
process associated with packing and shipping orders; it can
be done in a variety of ways [29]. For our purposes, we chose
a system consisting of aisles of racks with tote containers
in which workers place items into, following instructions
from light indicators. Order preparation commonly involves
whole-body motions, such as repetitive bending and material
or tool handling. We recorded RGB videos data of these com-
plex actions and used them to test our proposed methodol-
ogy. This research considers various primitives—predefined
in [11] and shown in Figure 4—and activities—Label, Scan,
Search, Putting, Confirm.
Our case study considered six workers with different profi-

ciency levels. Each subject was recorded for 40-60 min with
a relative view-point variation of 60◦, 120◦, 240◦, and 300◦;
these views were selected to minimize hand occlusion. RGB
videos were recorded at a resolution of 1280 × 720 pixels
at 30 frames per second; this high frame-rate was selected
to minimize hand occlusion due to dense sampling. When
occlusion did occur the sample was simply discarded.

The collected data was manually labeled selecting from
thirteen primitives (see Figure 4) and five activities. Actions
irrelevant to the activities were considered as delays and
labeled into one category. These actions include taking irreg-
ular rest time, walking to grab a box, and disposing of boxes.
Other actions not taken into account included communicating
with coworkers and using the restroom. The final dataset
was partitioned into training and validation sets, discarding
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FIGURE 4. Samples from the selected primitives for the sorting activities in the distribution center. The primitives are:
(a) search, (b) find, (c) select, (d) grasp, (e) hold, (f) transport loaded, (g) transport empty, (h) position, (i) use, (j) inspect,
(k) preposition, (l) release load, (m) and delays.

10 min between sets to ensure data independence. Data was
partitioned again using a moving-window approach with a
size of 1 s. This process produced 5, 000 samples which we
partitioned into training and validation splits of sizes 80% and
20%, respectively. All experiments were run on an Intel i9
3.3 GHz processor with 20 cores, 48 GB of RAM memory,
and an Nvidia GTX 1080 Ti with 12 GB of vRAM using the
PyTorch deep-learning framework [28].

A. BENCHMARK EVALUATIONS
We assessed the performance of our system, on both primi-
tives and activities recognition, by comparing it against sev-
eral models: R(2+1)D [36], I3D [5], ResneXt3D [16] and
SlowFast [9]. To compare models we devised two protocols
for primitives and activities classification.

For primitives classification, the protocols were: cross-
view—designed to test if the models can generalize to view
variation—corresponding to angles 60◦, 120◦ for training
and 240◦, 300◦ for testing; and cross-subject—designed
to test if the models can generalize to subject variation—
corresponding to workers 0, 1, 2 and 3 for training, and
4 and 5 for testing.

For activities classification, the protocol was to compare
the classical end-to-end classification framework with the

TABLE 1. Primitives recognition results from different methods, using the
cross-subject and cross-person evaluation criteria on our dataset.

CT-HMM model framework. In the end-to-end framework,
we used a variable frameskip to reduce the duration of activ-
ities to 64 frames and no information of the primitives was
provided. In the CT-HMMmodel framework, we maintained
the duration of each video and used the logits produced by the
models in the cross-view primitives classification protocol as
input to the model.

All models were trained for 100 epochs, with learning
rate of 10−3, reducing it by a factor of 10 in the epochs
60 and 80, as a learning rate schedule. We used standard
data augmentation techniques for human action recognition
in videos.

Table 1 shows that our system, which combines the
pose data and the RGB data around the subject hand, has
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FIGURE 5. (a) ROC curves for primitives recognition of all models following the cross-view protocol. (b) Confusion matrix of primitives recognition of
our model.

TABLE 2. Activity recognition results from different methods, using the
end-to-end and CT-HMM evaluation criteria on our dataset.

the highest accuracy among the compared models in the
cross-view experiments; while R(2+1)D performed better
than all other models in the cross-person experiments. Even
though our model does not achieve the highest test accu-
racy in the cross-person primitives classification protocol,
the results show that it is also highly competitive, among the
compared models, in this task. The ROC curves for the
cross-view task are shown in Figure 5a with our model
achieving the highest AUC (0.963).

Table 2 shows that all models improve their performance
when the activities recognition is managed by the CT-HMM,
instead of the classical end-to-end approach. One of the
potential reasons for these results is the fact that activities
have a higher duration and the end-to-end approach is limited
to a relatively low number of frames. Also, the CT-HMM
is more suitable to small datasets, since models with large
capacity tend to overfit. The use of the CT-HMM model
increases the activities classification accuracy by 17% in
all models. This improvement on performance is also seen
in Figure 6a, with our model attaining the highest AUC in

both end-to-end and CT-HMM methodologies, 0.953 and
0.989, respectively.

Our system achieved an average accuracy of 78.36% for
the task of primitives recognition. The primitives categories
with the highest accuracy were Position, Inspect and Prepo-
sition, while the categories with the lowest accuracy were
Grasp, Hold and Release (see Figure 5b). Likewise, our
proposed system achieved an average accuracy of 92.50%
for the task of activities recognition. The activities categories
with the highest accuracywere Label andPutting, while those
with the lowest accuracy were Scan, Search and Confirm (see
Figure 6b).

B. LABOR PRODUCTIVITY METRICS
We used our proposed system for standard times calculation
(see Table 3) following the procedure described in [11].
This procedure considers Personal, Fatigue, and Delay (PFD)
allowances. We have considered a base allowance of 5%
for the five activities, which represents the personal needs
allowance. For the Search activity, we consider an extra
allowance of 5% since it requires a high level of atten-
tion. Finally, for the Putting activity we consider an extra
allowance of 12% since it generatesmental stress and requires
a high level of attention. These allowance values are an
industry standard and the reader is refereed to [11] for more
information.

We used our proposed system to calculate labor productiv-
ity metrics. We considered worker availability, performance,
and overall labor effectiveness (OLE). Worker availability
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FIGURE 6. (a) ROC curve for activities recognition of all models. (b) Confusion matrix of activities recognition of our model.

TABLE 3. Standard times calculation.

measures the percentage of time spent doing productive
(value-adding) activities. Likewise, Performance compares
execution times of workers to standard times, and OLE is
calculated as the product of these two metrics and the quality
of work obtained from historical data. These metrics allow
managers to make operational decisions, providing needed
information to analyze their combined effect over the activi-
ties [13]. For instance, they can help locate areas in which an
optimal work schedule can be critical to productivity. Figure 7
details the obtained metrics for each worker.

The calculated metrics can help to analyze productivity,
detect opportunities to improve proficiency at the individual
level, and identify corrective actions such that all operations
become up to standards.

IV. CONCLUSION AND FUTURE WORK
In this paper, we present an automatic replacement for the
human-in-the-loop methodology for measuring the perfor-
mance of manual labor using skeletal data and features
extracted around the hands. We focused on task recognition
at two levels of abstraction–primitives and activities–using
an encoder-decoder based classifier and a continuous time

FIGURE 7. Worker availability, performance, and overall labor
effectiveness measured by our proposed system.

hidden Markov (CT-HMM) classifier, respectively. As a case
study, we collected RGB video data from order preparation
tasks in a distribution center (DC) and labeled it selecting
from 13 predefined primitives and 5 activities. This dataset
had several challenging characteristics such as: view angle
and illumination changes, and interrupted work-flow. The
achieved accuracy was 78.36% for primitives recognition and
92.50% for activities recognition.

The main contribution of this paper is the hierarchical
human action recognitionmethodology, working at two levels
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of abstraction. The experimental results suggest that leverag-
ing upon the relation between primitives and activities signif-
icantly improves the accuracy of the system; other methods
that employ end-to-end frameworks are less suitable for the
task, especially with limited data and training time.

These results demonstrate that video data along with
deep-learning techniques can take advantage of characteristic
patterns according to the type of primitives and activities
performed; and show that our methodology is capable of
reaching human-level proficiency in measuring the perfor-
mance of manual labor. Since we have used standard and
predefined primitives, the proposed approach has potential to
be adapted to various industrial settings.

Current limitations of our system include: it requires very
little intra-class variability, meaning primitives must be per-
formed in a very similar way; it identifies objects using
pre-trained networks, which could confuse the system when
similar-looking objects are used; and it needs dense annota-
tions at the primitives level.

Directions for future work include: incorporating context
using an object recognition neural network trained on objects
commonly found in DCs; testing the proposed methodology
in other areas; using context free grammars instead of the
CT-HMM, which may allow to represent higher levels of
abstractions; and performing unsupervised learning of the
primitives and activities taxonomy.
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