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Abstract—Recent studies show that it is feasible to use elec-
trical signals from Electro-encephalography (EEG) to control
devices or prostheses, these signals are provided by the body
and can be measured on the scalp to determine the intent of
the person when it is observing a visual stimulus frequency
range detectable by the human eye. This group of signals are
very susceptible to noise due to voltage levels that are able to
acquire. Therefore, in this work we propose a statistical analysis
of the distribution of normal EEG signals in order to determine
the need of a pre-processing to remove noise components from
electrical grids or other possible sources. This preprocessing
includes the design and use of a filter that will eliminate any
signal component that is not in the operating frequency range of
the EEG occipital area of the brain. Finally, we will proceed to
use the k-means algorithm to cluster with signals according to
their frequency and temporal characteristics.

Index Terms—Electro-encephalography; Occipital Lobe; Di-
rect Current Artifacts; Butterworth Filter; Signal Preprocessing;
Fast Fourier Transform; Clusterization.

I. INTRODUCTION

B IOMEDICAL signals, such as Electroencephalography
(EEG) are used to measure electrical brain activity with

the help of electrodes that get in contact with the scalp.
These signals represent cortical neuronal activities of different
lobes of the brain such as frontal, temporal, central, parietal
and occipital [1]. These electrodes that are located in the
occipital lobe of the brain allow us to detect visual stimulus.
The electrical activity of this brain area reflects the same
frequency behavior than the visual stimulus [2]. There are
many invasive and noninvasive methods to acquire these EEG
signals. Invasive measurements require the use of needles or
even complicated surgeries; however, the non-invasive method
is more accessible to us and easy to perform. The non-invasive
method is by far the most common method of measurement
because it is superficial and can be performed with minimal
risk to the person, in this method the electrodes measure
generally cortical electrical activation [3].

The non-invasive method, also known as a surface method,
despite being the most common, has interference problems
caused by the electrodes used on the scalp; however, it is

important that these electrodes are wetted with a conductive
gel with components of sodium chloride to reduce the
impedance of leather scalp and should avoid relative motion
between the electrodes and the head of the volunteer [4]. Other
types of perturbations which are susceptible EEG signals
is the direct current (DC) and the artifacts that work with
alternating current (AC). The amplitude of the EEG signals
ranges from microvolts to lower millivolts range - mV (less
than 10mV). The amplitude, and the properties of EEG signals
in both the time domain and frequency depend on factors
such as stimulus intensity, quality electrodes contacts used as
a reference, the properties of the scalp skin (e.g., the thickness
of the skin, adipose tissue, among others), electrode properties
and the amplifier, as well as the conductive gel quality [4], [5].

The development of technologies for rehabilitation of
patients with motor impairments, particularly for those who
have difficulties to control their movements by diseases such
as Parkinson’s, or injury to the spine or muscle spasticity, may
be possible through measuring bioelectric EEG signals that
patients generate and therefore determining the movement
intention of the patient. However, given the susceptibility of
these signals to noise, some pre-processing methodologies
and clustering of the EEG signals have been proposed [6].

In this paper we use a k-means algorithm for clustering
pre-processed EEG signals using temporal characteristics and
frequency to detect when a person is observing visual stimuli
in two frequency ranges.

This paper describes in section II the methodology used
for data collection with healthy volunteers. Section III shows
the results of the pre-process and subsequent clusterization
with the proposed algorithm and in section IV a discussion
of these results and some conclusions are presented.

II. METHODOLOGY

The data acquisition process begins with capturing EEG
signals from 5 healthy skilled volunteers who gave their
written consent before performing the experiments. Each
volunteer was asked to repeat an experiment for 10 times at
different frequencies; each experiment was trigger by a visual978-1-5090-1629-7/16/$31.00 c© 2016 IEEE
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stimulus.

The experiment was designed for recording the EEG
signals generated by two electrodes: Left Occipital (LO) and
Right Occipital (RO). These electrodes were placed on the
surface of the occipital area of the scalp. For the experiment
the volunteers were sitting in a comfortable chair and were
placed at front of a display that generated visible stimuli
through white LEDs on the following frequencies: 5, 6, 7, 8,
9, 24, 26, 27, 28, 29 Hz. The frequency of these stimuli was
randomly generated by a digital frequency generator. The
volunteers during the elicitation process must be completely
relaxed in order for the experiment to be successful. Figure
1 shows a volunteer in the acquisition process of surface
EEG signals using a noninvasive commercial equipment
[7]. Each of these stimuli were 19.5 seconds long, a time
that was established through previous laboratory tests as
been sufficient for the volunteer to adapt to the visual stimuli.

Fig. 1. Visual stimuli generated by a display with LEDs used to acquire the
occipital EEG signals.

Each volunteer performed an experiment for each of the
10 visual stimuli frequencies (5, 6, 7, 8, 9, 24, 26, 27, 28,
29). In each experiment the EEG signals generated in the 2
electrodes (LO, RO) of the occipital area was simultaneously
recorded. It is important to note that the data acquisition
equipment has a sampling rate of 128 samples per second,
allowing to acquire 2500 samples, considering that each task
has a duration of 19.5 seconds.

The electrodes used to measure the EEG signals were the
two occipital areas, as shown in Figure 2. These electrodes
capture the visual stimuli generated by the eyeballs.

Figure 3 shows the behavior of the acquired EEG signals
containing 2500 samples captured through two electrodes
simultaneously around the occipital area. The horizontal lines
of the figure represent the minimum and maximum average
of the shift (offset) from the acquired signals. This is due to
the presence of direct voltage current (DC), also known as

Fig. 2. Distribution of the 2 occipital electrodes Emotiv equipment.

DC artifacts [4], [8].

For the simplicity of the analysis, the EEG signals of all
experiments were grouped into a single matrix: EEG (2500
rows containing the samples x 20 columns containing the
frequencies);

Fig. 3. DC artifacts present in the occipital EEG signals 5Hz visual stimulus.

Once the DC artifacts have been identified, the hypothesis
testing normality of the acquired data can be performed. As
demonstrated in [9], when data contains noise due to DC
artifacts it does not behave as a normal distribution. In the
test with a significance level of 5% for a null hypothesis
Ho, the EEG signals captured were not normally distributed
with zero mean and variance value of 1, whereas for the
alternative hypothesis H1, the EEG signals were modelled
as a normal distribution with zero mean and variance value
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of 1. Therefore, there is insufficient evidence to reject the
null hypothesis Ho, because the captured signals are very
susceptible to interference of noise coming from DC artifacts
and the electrical grid. The presence of DC artifacts alters
the characteristics of descriptive statistics in the time domain,
and the values for mean and variance. Figure 4 shows a)
the histogram of the occipital EEG signals with a visual
stimuli area of 5Hz, which does not behave as a normal
distribution; and, b) the comparison between the distribution
of EEG signals vs data from a theoretical normal distribution.
Plotting the acquired data, it shows a normal distribution of
the samples.

Fig. 4. a) Histogram of the EEG signal without pre-processing to occipital
area with 5Hz visual stimulus. b) Comparison between the distribution of the
EEG acquired data vs data from a normal distribution.

The results of the histogram for the EEG visual stimuli
signals on the frequencies 6, 7, 8, 9, 24, 26, 27, 28, 29 Hz,
show similar behavior to what is seen in Figure 4, even in
the comparison between the distribution of EEG data vs. a
theoretical normal distribution.

The analysis in the frequency domain has also been
performed and the presence of noise with its effects was also
detected. For this analysis the Fast Fourier Transform (FFT)
was applied to the 2500 electrode samples per electrode
per visual stimulus per volunteer. Figure 5 shows the signal
as having a strong activity near to 0 Hz frequency in the
presence of DC artifacts.

Having identified the presence and type of noise in the
EEG signals, a Butterworth filter of third order was designed
to obtain a frequency response plot as flat as possible and
avoid distorting the original signal in the frequency domain
[9]. The filter was designed for the frequency range between
5 and 30 Hz, which is the range in which EEG stimuli was
generated.

III. RESULTS
After identifying the noise characteristics, the preprocessing

of EEG signals was conducted by applying the designed
filter. Figure 6 shows the 2500 electrodes samples. There
can be seen the complete elimination of noise caused by the

Fig. 5. An analysis to the FFT frequency of the EEG signal.

presence of DC artifacts. It can also be observed a signal
without offsets or tendencies for performing analysis and
extraction of temporal and frequency characteristics without
major distortions.

Fig. 6. EEG signal whithout DC artifacts in the 2 electrodes of the occipital
area.

Figure 7 shows the signal without DC artifacts. This signal
allows to assess cortical activity in the occipital area of
volunteers and subsequently to extract descriptive statistics
characteristics.

Fig. 7. Frequency analysis filtered with the FFT of the EEG signals.

After pre-processing the EEG signals the testing normality
hypothesis was performed to a level of significance of 5%,
being the Ho the null hypothesis. The EEG data are not
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normally distributed with mean value of 0 and a variance
value of 1 versus the alternative hypothesis H1: The EEG data
are normally distributed with mean and variance values of 0
and 1 respectively. The test indicates that there is sufficient
evidence to reject the null hypothesis Ho, therefore we
accept the alternative hypothesis H1. Figure 8 shows: a) the
histogram of the EEG signals filtering the occipital area with
the same 5Hz visual stimulus showing a normal distribution;
b) shows the comparison between the distribution of EEG
signals versus data of a theoretical normal distribution. The
graph shows a normal distributed behavior and because of the
perfect slope of graph, it is understandable to infer a normal
theoretical distribution.

Fig. 8. a) Histogram of the EEG signal with pre-processing to occipital area
with 5Hz visual stimulus. b) Comparison between the distribution of the EEG
acquired data vs data from a normal distribution.

The results of the histogram of the EEG signals filtered
with visual stimulus frequencies: 6, 7, 8, 9, 24, 26, 27, 28,
29 Hz, is similar to what is plotted in Figure 8, even for
the distributed EEG data acquired vs. the theoretical normal
distribution.

Once the acquired signals were preprocessed from the
Left Occipital (LO) and Right Occipital (RO) electrods,
the temporal statistical characteristics such as minimum,
maximum, median, arithmetic mean, variance (LO, RO)
covariance (LO, RO), Correlation (LO, RO) and the
maximum frequency rate value of the FFT signal were
extracted. Additionally, some characteristics of the signals
in the frequency domain were extracted such as WhichMax
(LO, RO), Variance (LO, RO) Covariance (LO, RO) and
Correlation (LO, RO).

To facilitate the analysis a matrix was developed in which
the rows represent the frequency of the visual stimuli and the
columns represent the time characteristics and frequency of
both electrodes from the left and right occipital areas (LO,
RO). The algorithm used for determining the appropriate
number of clusters is described below [10]:
1. Select K centroids (K rows chosen at random).
2. Assign each data point with the closest centroid.
3. Recalculate the centroid as the average of all data points in

a cluster (i.e., the centroids are p-length mean vectors where
p is the number of variables).
4. Assign data points to their closest centroids.
5. Repeat steps 3 and 4 until the observations are not
reassigned or the maximum number of iterations (R use 10
as a default) is reached.

The algorithm, uses the enhanced R. Hartigan and Wong
[11] algorithm. This means that in steps 2 and 4 each
observation is assigned to the cluster with the smallest value
of:

Figure 9 shows the graph for the sum squared error (SS)
values vs the number of clusters. This suggests that the
optimal number of clusters is two (k = 2).

Fig. 9. SS vs k clusters.

Once known the value of k suggested for our dataset, the
2 clusters represent the signals belonging to the group of
5 to 9 Hz and the other group of 24 to 29 Hz. Then we
proceed to apply the k-means algorithm to a group data with
the following characteristics: a) data with the characteristics
of variance (time and frequency), covariance (time and
frequency) and correlation (time and frequency). b) The same
data, but now with the index maximum frequency. c) The
data now without variance (time and frequency), covariance
(time and frequency) and correlation (time and frequency).
The results that were obtained with the data groups are
shown in Table 1. The success was measured by checking
the clustering of data, a procedure that was performed with
the following stimulus frequency: 6, 7, 8, 9, 24, 26, 27, 28,
29 Hz. obtaining tagged data.

TABLE I
HIT RESULTS USING K-MEANS TO DIFFERENT GROUPS OF FEATURES.

Table Head Features %Success
a With: Var(t,f), Cov(t,f), Corr(t,f) 36%
b With: WhichMax(f), Var(t,f), Cov(t,f), Corr(t,f) 80%
c Only With:WhichMax(f) 80%
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Figure 10 shows the cluster with the index variables of
maximum frequency for both the left occipital electrode
WhichMax f01 (Wmax f01) and the right occipital electrode
WhichMax f02 (Wmax f02). This will give us a percentage
between between SS / total SS = 74.3%.

Fig. 10. EEG signals in the frequency range 5-9 Hz (cluster 1) and in the
range of 24 to 29 Hz (cluster 2).

IV. DISCUSSION AND CONCLUSIONS
One of the goals of this research was to use a normal

distribution test on EEG signals in both the time and
frequency domain without pre-processing in order to detect
the presence of noise parameters using descriptive statistics.
This detection allowed us to determine the need for filtering
the acquired signals. In addition, we had to use the FFT of
the EEG signal without pre-processing to appreciate data with
strong activity near 0 Hz. This led to the conclusion of being
an effect of DC artifacts. It is interesting to note this was also
visible in the time domain by detecting trends from these DC
artifacts. Therefore, the hypothesis test is a valuable tool that
helps us to detect the presence of noise given the temporal
effects from low frequency DC artifacts as the average from
the variation of the signal during the experiment, as well as
its variance.

The design of the display played an important role in
reducing the random environment noise, that shows the filter
was good enough as preprocessing step.

Another objective of this work was to perform a
clusterization with the pre-processed data based on temporal
statistical characteristics and frequency. Based on the extracted
characteristics two clusters were detected on each of the
EEG signals: One in the frequency range of 5 through 9 Hz
(cluster 1) and another in the range of 24 to 29 Hz (cluster
2).

As shown before a better cluster is obtaining by measuring
the values of the index of maximum frequency. This happens
because the occipital EEG signals show the same frequency
behavior to visual stimuli. Furthermore, the use of Pearson
correlation characteristics between the electrodes of the
occipital area does not improve the cluster because the visual
stimuli is on both eyes in every experiment for all frequencies.

The results with visual stimuli in the following frequencies
6.0, 7.0, 8.0 26.0, 27.0, 28.0 and 29.0 Hz was approximately
90%, because the 5 Hz frequency is very low for visual
stimulation experiments; and, frequencies of 24 and 9 Hz
conform the closest group signal that were used in the
experiment.
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