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Abstract—Data analysis for metabolomic studies is challenging 
considering the number of statistical tools and standardization 
processes, which provides different results and projection in a 
single study. In addition, generation of high complexity data is 
common for untargeted metabolomics, requiring careful analysis 
and interpretation of results. In order to propose an innovative 
method for the analysis of a mass spectrometry metabolomics 
dataset, data from a Zika virus study was used.  The analysis of 
this dataset combined principal component analysis and 
supervised learning methods such as support vector machines and 
logistic regression, to provide a truthful prediction model for 
discriminating samples of individuals with Zika virus infection 
and healthy controls. These supervised methods were used to learn 
the features that configured the “fingerprint” for the viral 
infection, showing over 98% of accuracy in a validation set. This 
model could be used as a fast and reliable test for determining Zika 
virus infections as part of healthcare services.  Furthermore, this 
novel method shows potential for diagnosing other arboviral 
diseases. 

Keywords—Machine Learning, PCA, SVM, Logistic Regression, 
Zika virus 

I. INTRODUCTION 
Applications of machine learning (ML) arise at the 

intersection of multivariate statistics, associating data analysis 
and computer science, aiming to develop efficient computing 
algorithms [1]. As a result, this association directs to the 
development of ML models from massive data sets, which can 
be done via supervised and unsupervised learning [2]. In 
practice, ML techniques are enabling the analysis of spectral 
data extracted from large number of samples obtained from 
several groups. During training and testing ML models can be 
continuously fed with data representing the features that will 
allow effective discrimination between samples and groups. 

With respect to modern applications, ML have been applied 
to different techniques models, such as support vector machines 
and logistic regression, which have been used in several 
diagnostic applications: imaging analysis [3]; cancer diagnosis 
[4-6]; diagnosis of diabetes [7] and others [8]. Considering 
arbovirus infections, these are mostly represented by Dengue, 
Chikungunya and Zika virus and ML approaches have been 
directed to epidemiological studies [9,10]. 

Among the arboviruses infections, the Zika virus (ZIKV) 
infection is characterized for being either asymptomatic or 
associated with fever, headache, exanthema, joint pains and 
malaise [11]. The infection by ZIKV has been on the spotlight 
in South America since its outbreak in May of 2015, when the 
infection was firstly associated with newborn congenital 
microcephaly [12]. By 2016, more than 1 million people had 
been infected, and by April of 2016, ZIKV transmissions were 
registered in 27 countries in the Americas [13]. Additionally, 
ZIKV infections were globally reported by mid-2018, with more 
than 220.000 confirmed cases worldwide. However, the number 
of infections may be higher, because around 80% of infections 
are asymptomatic and many communities lack suitable 
diagnostic methods during early outbreaks [14]. 

Current diagnosis for ZIKV infections is challenging due to 
several factors, such as overlapping symptoms with other 
arboviral diseases, and limitations in sensitivity of genetic and 
serological diagnostics [15-17]. Therefore, development of an 
effective diagnostic tool could contribute for both identification 
of the infection agent and patient health status, specially in 
ZIKV infection that can progress to Guillain–Barré syndrome 
and affect fetus development by causing congenital 
microcephalia [18,19].  

Mass spectrometry-based techniques have been used for 
diagnostic purposes in a wide spectrum of biological samples, 
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which produce a rich variety of datasets for statistical analysis 
[20]. Together with recent computational capabilities that use  
sophisticated data processing algorithms, these high-throughput 
techniques are capable of correctly differentiate conflicting 
conditions [21].  

Generating rich datasets is the starting point for current data 
analysis techniques, which learn from “positive” and “negative” 
real examples; such as, biological samples from infected and 
healthy individuals. Learning from this data will allow us to 
discover which are the specific spectral signatures of a particular 
biological condition based on their intrinsic differences, even if 
they are imperceptible to humans [22]. Such differences would 
precisely allow us to learn the particular features, such as the 
“fingerprint” that makes a group behavior; features that further 
will compose the model that will be used to recognize the 
occurrence of the learned patterns in new unseen data. 

In this research, ML modeling was applied to a 
metabolomics dataset that compared patients with ZIKV 
infection and their health control counterparts. Prior to learning 
the classification model, we performed a feature importance 
analysis to extract and to isolate the most important components, 
which will be used to identify the presence (or not) of 
endogenous signatures from either ZIKV infected or healthy 
patient’s metabolic fingerprinting. This paper describes the 
dataset, including the experimental design for the LC-MS 
metabolomics. We also discuss the machine learning models 
proposed for classifying the samples and its mathematical 
formulation. 

II. THE DATASET 

A. Ethics Statement 
The present study has approval from the Ethics Committee 

of the Hospital General Luis Vernaza, from Guayaquil, Ecuador. 
A written informed consent was obtained from all participants. 

B. Study Design 
This is a prospective study that included 20 patients between 

18 and 40 years old. All patients were clinically evaluated to 
determine their health status, considering that excluded cases 
refer to patients with confirmed diagnosis for overlapping 
infections, such as Influenza, Dengue fever, Chikungunya fever, 
and other viruses’ infections. Molecular diagnosis was used to 
confirm infection by Dengue and Chikungunya fever. Eligible 
patients were divided into 2 groups: The ZIKV group (n=10), 
with patients who presented clinical suspicion and positive 
molecular diagnosis of ZIKV infection; and, the Healthy Control 
group (HC; n=10), which included healthy volunteers that did 
not present fever or symptoms of other viral infection for at least 
3 months. 

C. Metabolomics 
The samples were submitted to metabolites extraction based 

on the protocol stablished by the Glasgow Polyomics 
(University of Glasgow, United Kingdom). For liquid 
chromatography–mass spectrometry (LC-MS) matabolomics, 
each sample was randomly run on a ZIC-HILIC (hydrophilic 
interaction chromatography) column (SeQuant) coupled to the 
Orbitrap Q Exactive mass spectrometer (Thermo Scientific), as 
previously described [23]. 

III. MACHINE LEARNING MODELS 
The proposed machine learning models for ZIKV infection  

detection have the following phases: 
1. Pre-processing of data: Before performing the 

classification, data from the Zika group (positive examples 
or with ZIKV) and from the Control group (negative 
examples or patients without ZIKV) are standardized, 
normalized, merge and randomly divided into two subsets: 
Training and Test. 

• 70% of the patients will be assigned for training; this 
set will be called: The train set. This portion will be 
further divided into 2 sub-sets: 80% for training and the 
other 20% for cross-validating the process of 
determining most discriminant features for Zika 
detection, as well as for controlling overfitting. 

• The rest, 30% of the dataset will be reserved untouched 
for blind testing the models; the set will be called: The 
test set. This approach will allow us to evaluate the 
classifier and check for under or overfitting the 
available data. 

For possible variations during the training and validation 
process, we repeat this process 10 times, referred as epochs, 
and report the average performance and standard deviation 
for the validation set. 
In this phase we have also assigned the output labels to each 
sample of each group: 

!"#$%& = 	 {%*},			%* = [0, 1]            (1) 

• 1 represents the Zika group, corresponding to positive 
examples or with ZIKV, and 

• 0 represents the Control group, the negative examples or 
patients without ZIKV. 

We need a well-defined range of feature values for feeding 
the ML models; hence, we normalized the combined 
relative intensity with the corresponding spectral mass of 
each sample. For normalizing the merged vectors of the 
samples, we use the relative mass spectral-intensity of each 
vector and divide each vector element by their maximum 
value, as defined in the following equation: 

12*,3 = 	
4567

489(;<6,7=>:@)
, B ∈ [1…E]; F =∈ [1…G]          (2) 

Where E  is the total number of samples in the dataset 
(Control and Zika groups); G  is the total number of m/z 
mass measurements; 12  is the normalized value of 
measurement F of the correspondent patient B; and, H2 is 
the merged mass spectral-intensity value. 

Reduction of number of features through Principal 
Component Analysis: 
Our dataset has thousands of features, which makes the 
modeling challenging; the inspection made to the dataset 
showed that there were values missing, which could make 
our model less skillful. Since it is hard to know which 
features of the dataset are relevant and which are not, we 
will perform a dimensionality reduction using principal 
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component analysis (PCA) in the process of training our 
models. 
Once the projection on the principal components is 
calculated, we can apply this transformation to the train and 
test sets, which can be projected into a subspace with the  
principal components or dimensions. For extracting the 
principal components, we have standardized the data before 
using the PCA method available in the Scikit-learn library 
for Python. After reducing the dimensions, the 
explained_variance_ratio_ function from Scikit-learn, 
reported that more than 97% of information is kept into the 
2 principal components, hence, we will use them for 
performing classification: array([0.92461621, 
0.05301557]) 

2. Determination of the classifying boundaries: After 
dimensionality reduction, we use the 2 principal 
components to perform the classification; we will use the 
following two classifiers and compare their results: Support 
Vector Machines (SVM) and Logistic Regression (LR). 
2.1 Support Vector Machines: An SVM is a flexible 

nonparametric machine learning algorithm and it will 
be used in this work for binary classification to 
determine if a sample corresponds to an infected or not-
infected group. The goal will be to find the values of 
the hyperplane’s parameters that best separates the 2 
classes. To discover these parameters, we will use the 
Sequential Minimal Optimization approach. In this 
method a random training sample is selected in each 
iteration and used to update the parameters.  
For learning the hyperplane that best separates the 2 
groups, we will use two different update procedures, 
depending on the output value. If the output value is > 
1, it suggests that the training sample was not a support 
vector, hence the instance was not directly involved in 
calculating the output, in which case the parameter is 
slightly decreased, using formula (3): 

I = J1 −
L

M
N × I              (3) 

Where: I is the parameter that is being learned, P is the 
current iteration (e.g. 1 for the first update, 2 for the 
second and so on).  
If the output is < 1 then it is assumed that the training 
instance is a support vector and must be updated, to 
better explain the data using the following formula: 

I = J1 −
L

M
N × I +

L

R×M
× (S × T)          (4) 

Where: I is the parameter that is being updated, P is 
the current iteration and U is the regularization 
parameter, which was set to 0.01 in our experiments. 
This regularization parameter serves as a degree of 
importance given to miss-classifications. Since SVM 
looks for maximizing the margin between both classes 
and minimizing the amount of miss-classifications, and 
as we can see in Fig. 1, there are a couple of non-
separable samples in each group, in order to find a 
solution, the miss-classification constraint has been 

relaxed, and this is done by setting the mentioned 
"regularization" parameter. 

2.2 Logistic Regression: The LR model takes real-valued 
inputs, as the intensity with the corresponding spectral 
mass in our dataset and makes a prediction as to the 
probability of the input belonging to the class 1 (Sika 
group). This learning algorithm also has the objective 
of discovering the best parameters of the boundary line 
based on the training data. In this case, we will estimate 
the values of the parameters using Stochastic Gradient 
Descent, and for updating the parameter values we use 
equation (5). 
I = I + V × (S − WX$YBZPB[1) × WX$YBZPB[1 ×
(1 − WX$YBZPB[1) × T            (5) 
Where: I  is the parameter we are updating and 
WX$YBZPB[1 is the output of making a prediction using 
this model; V  is the learning rate stablished at the 
beginning of the training. We are using an V value of 
0.01.  
Logistic regression assumes no error in the output 
variable ( S ), hence we have tested the outputs 
removing the outliers from the training data, the results 
show that indeed the accuracy improves, as it is shown 
in Fig. 1 and Fig. 2. 

3. The classifier: Once the principal components were 
discovered, we trained the SVM and LR classifiers using 
the selected components only, which allows us to simplify 
the process with a subset of the projected features. As seen 
in Fig. 3, a line perfectly separates the 2 classes, hence we 
used a linear kernel for the SVM model. To train the 
classifiers we used the data from the training set; later tested 
with the blind-test data from the testing set; and, then report 
the result for Zika detection. During training we have used 
cross-validation as an approach to estimate the performance 
of the learning algorithm with less variance than a single 
train-test set split. We have set 5 folds. After running cross-
validation we end up with G different performance scores 
that we summarized using a mean and a standard deviation, 
which are reported in Table 1. 

IV. RESULTS AND DISCUSSION 
Metabolomics has expanded considerably over the last two 

decades and the amount of data being generated by these 
experiments keeps increasing. In addition, different tools have 
been developed for the analysis of such amount of data, which 
comprehends development of workflow, data processing, 
machine learning modeling, and interpretation of results [21]. In 
the present study, PCA allowed us to visualize the high-
dimensional dataset (1162 m/z measurements per patient) by 
projecting the two principal components onto a two-dimensional 
space, in which we can see that it is possible to learn a 
hyperplane that cleanly divides the samples in 2 classes, class 0 
as the non-infected class and class 1 as the Sika virus group, 
before pre-processing the data as shown in Fig. 1. 

Regarding clinical metabolomics for the study of ZIKV 
infection, current literature demonstrates group separation in a 
similar study, considering data analysis was conducted by 
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orthogonal partial least square-discriminant analysis (OPLS-
DA) [22].  

 

 
 

 
 

 
 

 
 

 
 

 

Fig. 1. Two Principal Components extracted from the train set, before pre-
processing. Squares indicate healthy controls, whereas triangles indicate ZIKV 

infection 

PCA indeed was used to evaluate neuroinflammation driven 
by ZIKV, showing that metabolite profiles were different 
according with time of macroglia cells infection [24]. Therefore, 
our results indicate new insights for the development of 
statistical tools that assist translation medicine. Fig. 2, shows the 
principal components after removing the outliers from the 
training data. 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

Fig. 2. Principal Components after removing the outliers from the training data. 
Squares indicate healthy controls, whereas triangles indicate ZIKV infection 

Since the 2 principal components, out of the 1162-
dimensions, kept more than 97% of the information, the SVM 

classifier can easily separate the samples as infected and not 
infected, or ZIKV and HC groups, as shown in the plot of the 
principal components in Fig. 3. The chart indicates a proper 
sample classification for both groups. 

For the LR classifier case, as shown in Fig. 4, there is also a 
perfect separation of the classes using the two principal 
components of the training set. 

 
 

 
 

 
 

 
 

 
 

 
 

 
Fig. 3. Decision boundary between Zika infected and not infected ccontrol 

groups samples using an SVM classifier. Squares indicate healthy controls, 
whereas triangles indicate ZIKV infection 

A. Comparing the two Classifiers 
We have used a mixture of one linear classifier, such as the 

Logistic Regression, and one nonlinear algorithm, such as the 
Support Vector Machine with a linear kernel. Before each run, 
we reset a random number seed to ensure that the evaluation of 
each algorithm was performed using exactly the same data splits 
and it ensures the results are directly comparable. Table 1 shows 
that accuracy for LR is 0.967 or 96.7% and for the SVM is 0.98 
or 98%. The SVM classifier performs best on the selected main 
features, thus justifying its use. 

TABLE I.  PERFORMANCE ACCURACY COMPARISON OF THE TWO 
CLASSIFIERS USING MACHINE LEARNING 

 
The algorithms were trained and evaluated multiple times on 

different data and cross-validation provided reliable results of 
the performance of the algorithm on new data. The choice of G, 
the number of folds, allowed the size of each test partition had 
the necessary sample size for the training, whilst allowing 
enough repetitions of the train-test evaluation of the algorithm 
to provide a fair estimate of the algorithm’s performance on 
unseen data. 

 

Accuracy: Mean accuracy STD 

LR 0.966667 0.020825 

SVM 0.981667 0.015000 
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TABLE II.  BREAKDOWN OF EACH CLASS BY PRECISION, RECALL, F1-
SCORE AND SUPPORT VALUES FOR THE SVM MODEL 

 
The SVM classifier performed better than the LR. As seen 

in table 2, which reports the performance metrics for the SVM 
model, it was able to identify almost all cases, from the test set, 
labeled as not infected (recall 0.95), and from these cases 
identified as not infected, all of them indeed belong to the HC 
group (precision 1.0). The model also has the ability to recall all 
cases (recall 1.0) which were labeled as infected, and from these 
cases identified as infected, 93% (precision 0.93) of them indeed 
belong to the Zika group. Finally, the f1 score tells us that the 
SVM classifier is 97% accurate in identifying not infected cases 
as compared to all other cases; and, 96% accurate in identifying 
the Zika cases as compared to all other cases, as reported in 
Table 2 above. 

 

 
 

 
 

 
 

 
 

 
 

 
 

Fig. 4. Separation between Zika and Control group samples using an LR 
classifier. Squares indicate healthy controls, whereas triangles indicate ZIKV 

infection 

B. Computing Performance Metrics 
All experiments were performed using a Macbook Pro, 2.8 

GHz Intel Core i7, 16 GB 2133 MHz LPDDR3 memory, 1 TB 
HD. Programs were written in Python 3.7 and we used the 
Scikit-learn library for pre-processing data, as well as for PCA, 
and classification with LR and SVM. Pre-processing the data did 
take less than a minute after we prepared the algorithms for 
decomposing the principal components and visualized the trends 
of the data. Training the ML algorithms using cross-validation 
and 5 folds, as well as its visualization took about 32 minutes for 
the whole batch (considering the one thousand one hundred 

sixty-two different measurements per patient). Once the model 
and its parameters were learned, the time to analyze a new 
feature vector, not seen before of a patient at prediction time was 
less than a second. 

V. CONCLUSIONS 
This preliminary study, based upon Zika metabolomic data, 

has shown outstanding results. Although the population of 
samples was limited, with this proposed methodology it is 
possible to envision a breakthrough technique in disease 
diagnosis tests, with potential to be used in further studies for 
biodiscovery.  

ML algorithms take care of extracting discriminative 
fingerprints for the condition of interest. The objective is that for 
any given patient with an unknown disease, we can use new 
samples to multiple classifiers simultaneously, with a fast and 
reliable response to potential diagnostics. Additionally, after 
PCA, SVM shows high accuracy for classifying (98%), which 
reinforces its statistical potential for a real-time embedded 
SVM-based diagnosis system. This approach is clinically based 
on patients’ response to ZIKV infection instead of virus 
detection and can be used in primary care for early diagnosis and 
prognosis. 
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