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Abstract—Fuzzy Cognitive Maps (FCMs) and current develop-
ments in Machine Learning have been contributing in capturing
human behaviors through data and learning models, which focus
on predicting, interpreting or identifying behavioral patterns
on systems and their relationships. In recent years seasonal
diseases caused by vectors that transport viral pathogens in
tropical regions, such as the Aedes Aegypti mosquito, have
caused noticeable impacts both on public health and country's
economies in Latin America. This work proposes a model for
early prognosis based on FCMs for making a risk assessment of
potential presence of seasonal virus-related diseases in a specific
region of the Ecuadorian coast. The FCM is used as a knowledge
representation strategy for the cause-effect relationships; and,
learning models for gaining the identification of the underlying
cause of symptoms. The model aims to improve the chances of
proper prognosis of seasonal diseases, which could impact not
only the prescription and correct decisions, but also the actions
taken for preventing the spread of seasonal diseases.

Index Terms—Fuzzy Cognitive Maps, Causal Complex Sys-
tems, Machine Learning, Knowledge Representation, Tropical
Seasonal Diseases, Dengue Fever

I. INTRODUCTION

Fuzzy cognitive maps (FCMs) as a cause-effect represen-
tation scheme are fuzzy feedback dynamical representations
of knowledge. Bart Kosko [1] introduced them in 1986, as
an extension of Cognitive Maps [2]. Cognitive maps are
represented with a set of nodes linked by directed and signed
edges; nodes represent concepts or events relevant to a given
problem; when a concept or event is present or not, the node
is in an on or off state respectively; and, the directed and
signed edges, between these nodes, represent the direction of
the causal influence and the excitatory or inhibitory effect
from one node to another. When these maps are defined as
Fuzzy Cognitive Maps, the causal relationships, as directed
and signed edges, are represented by fuzzy numbers, and the
state of a node is not only on an off/on state, but in a fuzzy
state, represented by an activation function with outputs in the
range of [0, +1]. A fuzzy number is a quantity whose value
is a real number also in the range of [0, +1]. The dynamic
representation of knowledge involves feedback; updating a

node could affect other nodes, which in turn the affected nodes
could affect the node initiating the update.

In recent years the seasonal diseases caused by vectors that
transport viral pathogens in tropical regions, such as the Aedes
Aegypti mosquito, have caused noticeable impacts both on
public health and country's economies [3]. In Latin America,
on average, 1.5 million cases of Dengue fever per year were
reported from 2010 to 2015, with an average cost of US$
472 per person in outpatient treatments, and US$ 1227 for
hospitalized cases, which for the case of the Dengue fever it
represents, an approximate cost of US$ 2.5 billion per year
[4].

Early prognosis tools embedded in Decision Support Sys-
tems and the provision of eHealthcare services based on
machine learning techniques for disease management, could
help mitigate the effects of seasonal virus related diseases and
help reduce the negative impacts on public health adminis-
tration. The aim of this research is to explore the potential
of unsupervised learning techniques in FCMs as a model
for prognosis and help establish early course of actions; we
claim the possibility of learning the parameters from the
initial identified cause-effect relationships from historical data
and expertise, which in turn can be used to improve the
effectiveness or effects of past decisions.

This work proposes a model for representing early prog-
nosis based on FCMs, as a dynamic network with learning
capabilities, which can be used for making a risk assessment
of potential presence of viral seasonal diseases in a specific
region of the Ecuadorian coast. The FCM is used as a knowl-
edge representation strategy for the cause-effect relationship
between symptoms, environmental conditions, observations
and historical facts recorded in previous related events in
this region; and the learning capabilities for gaining the
identification of the underlying cause of symptoms. This model
aims to improve the chances of proper diagnosis of seasonal
diseases, which could impact not only the prescription and
correct decisions, but also the actions taken for preventing the
spread of seasonal diseases.

This paper is organized as follows: Section 2 presents an
overview of the FCM modeling technique and a representation978-1-7281-1704-1/19/$31.00 © 2019 IEEE
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of the map, which will be used as the bases for making the
analysis and derived the learning models; section 3 discusses
the unsupervised learning method known as the Hebbian
Learning rule used in neural networks, and its mathematical
formulation for training FCMs; section 4 presents the prog-
nosis model, its data and the parameters used in the case
of seasonal virus diseases in the coastal region of Ecuador.
Section 5 presents a discussion of the results; and, in section
6 the conclusions are presented.

II. OVERVIEW OF FCMS AS A MODELING TECHNIQUE

A. Fuzzy Cognitive Maps (FCMs)

FCM is a graph of concepts, which represents a fuzzy
feedback dynamical system composed by nodes, capturing the
state or a characteristic of the system under analysis. The
nodes, as neurons in neural networks, can be considered as
computational units, which can get activated or deactivated,
depending upon the incoming signals into the node. State
values of the nodes can change over time, based on the
evaluation of the activation function in the node; the state
values are in the interval [0, +1]. The cause-effect relationships
between nodes are represented as directed and signed links.
The direction of the links captures the effect one node can
provoke to the other interconnected nodes, and the signed
values or weights associated with them represent the causal
strength, which can be positive to reflect an excitatory effect,
or negative as the opposite or inhibitory effect; the weight
values are in the interval [-1, +1]. A weight of -1 represents full
inhibitory effect, +1 full excitatory and 0 denotes not relation,
hence no effect. Other values or weights in the [-1, +1] range
represent different degrees of the cause-effect relationship.
The graphical representation of the cause-effect relationships
is equivalent to a zero-diagonal symmetric matrix, called the
connection matrix, which stores the corresponding weights
associated with the directed links between nodes.

In feedback dynamical systems agents provoke changes
to the system, which in turn it reflects the effects on other
agents; in epidemiology, such systems have a mechanism that
transmits an infection or infectious agent, from one affected
individual to another, which is known as a vector, usually a
living organism. Vectors are usually invertebrates or arthro-
pods like mosquitoes; these agents or animated intermediaries
transport disease-causing agents from one susceptible host to
another [5].

According to [6] the World Health Organization (WHO)
estimated about half of the population is infected with at
least one type of pathogen transmitted by vectors. Among
these pathogens we have the agents that cause the Plague
and Typhus, as well as the Dengue, Zika and Chikungunya
fever. Recent research carried out by [3, 4, 13, 14, 15, 16, 17]
has shown the cause-effect relationships not only among these
vectors and humans but also with the environment, social,
cultural and professional practices that impacted directly on
health and the economy of the infected communities.

Table 1 shows the main factors, extracted from these studies,
involved in the Dengue outbreak and seasonal virus infections
occurred in the south coastal region of Ecuador.

TABLE I
MAIN FACTORS INVOLVED IN THE DENGUE OUTBREAK AND

SEASONAL VIRUS INFECTIONS OCCURRED IN THE SOUTH
COASTAL REGION OF ECUADOR*

# Favorable conditions which contribute to the evolution of
seasonal virus diseases

1 Region of interest is the coast area
2 Presence of ammonia (present when there are mammals)
3 Presence of carbon dioxide (present with mammals)
4 Presence of lactic acid
5 Presence of octenol (present in the respiration and sweat of

humans)
6 Temperature of environment is above the average
7 Rainy season of the year
8 Wet containers (wet pans, tires, bathroom floor, bathroom tanks),

standing water
9 People frequent visitors of parks and recreation areas
10 Tourism (human movement during vacation)
11 Close livestock production
12 Close poultry production
13 Actions from a public health entity because of the season
14 Population susceptible of getting infected by contact with infected

patients
15 Symptoms identified associated with Dengue
16 Surveillance activities (active or passive)
17 Surveillance sites (permanent sentinel)
18 Average age of detected cases (between 20-30)
19 There are abandoned properties
20 No access to or interruptions of piped water service inside the

house
21 Properties have or shared a patio with shade
22 Have mosquito nets for beds
23 Fumigation within the property
24 Family head is man
25 Family head is woman
26 Family head is young and works
27 Level of education of affected people
28 Work (employee / self-employed)
29 Income level
30 Conditions of the property
31 Areas with high population density
32 People knowledgeable about dengue
33 Perception of risk of contamination
34 Season between February and May
35 Trash collection services
36 Prevention medical services
37 Housing in apartment / condominium
38 Housing in rural sector
39 Conditions favorable for the El Niño event
40 Poor cleaning habits in the community
* Sources: 1) The Dengue Net, http://www.denguevirusnet.com.

2) Dr. Félix E. Beltrán A., University UT Machala, Ecuador.
3) Dr. Anna M. Stewart. Center for Global Health and Translational
Sciences, State University of New York (SUNY).

These factors reflect the inter-relationships among the vec-
tors, environment, communities, health providers and official
entities acting in prevention and mitigation of viral seasonal
related diseases.

For this research the social, ecological and the effects of
the preventive actions from seasonal virus events have been
considered, as well as the climate conditions, which have
contributed to the evolution of Dengue seasons in the past,
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and community perceptions about this fever.

TABLE II
MAIN FACTORS INVOLVED IN THE DENGUE OUTBREAK AND

SEASONAL VIRUS INFECTIONS OCCURRED IN THE SOUTH
COASTAL REGION OF ECUADOR

# Favorable conditions which contribute to the evolution of
seasonal virus diseases

n1 Region of interest is the coast area
n2 Temperature of environment is above the average
n3 Rainy season of the year
n4 Actions from a public health entity because of the season
n5 Population susceptible of getting infected by contact with infected

patients
n6 Symptoms identified associated with Dengue
n7 Average age of the identified cases between 20-30 years old
n8 Areas with high population density
n9 Trash collection services
n10 Seasonal virus-related diseases

From Table I, we have selected ten conditions that in general
represent the environment, attitudes and effects of practices
regarding Dengue and the risk factors involved during the
outbreaks and seasonal virus events from 2014 to 2016, as
shown in Table II, these ten concepts will be used to represent
the historical factors and captured in an FCM; as illustrated in
Figure 1, nodes n1 to n9 will be considered as input variables,
and n10 as output. The connection matrix equivalent to the
FCM is shown later on Table III.

Fig. 1. FCM knowledge representation of conditions that contribute to the
evolution of seasonal virus-related diseases in the south coastal region of
Ecuador

The FCM in Figure 1 captures the context of the Dengue
outbreak and seasonal virus infections occurred in the south
coastal region of Ecuador, as a cause-effect map; nodes n1

to n10, as described in Table II, represent the main factors
identified in the outbreak. In this map the excitatory effect, is
represented as a (+) relationship and the inhibitory effect, is

represented as a (-) relationship. For example, the presence of
the event ”Population susceptible of getting infected by contact
with infected patients”, label as node n5, increases the effect
on node n4 ”Actions from a public health entity because of
the season”, represented as a blue link in the map, which in
turn also decreases the effect on node n5, represented as a
yellow link in the map. The degree to which the presence of
a node affects other nodes, as capture from historical data, or
from the experts, is captured in the connection matrix.

Hence, each node (concept) in the FCM has an activation
value that reflects the degree to which the node is active at a
particular iteration (discrete moment in time). Once the FCM
has been created, the expert knowledge (or historical data) is
captured and store in the connection matrix, and it is ready
to receive data from its input nodes, learn, perform reasoning
and infer decisions as values on its output nodes.

At a particular moment t the state of the map is represented
by the state vector S(t) = [S1(t), S2(t), ..., Si(t), ..., Sn(t)];
that is, the state value of a node ni at time t is captured by the
state vector value Si(t). The initial state refers to the system
state at the first iteration or at time t = 0. Once the initial
state, S(0) of the entire system is defined, the model can be
evaluated; that is, calculate the values of all nodes at discrete
time points in the future, based on equation (1); where the
value Si of each node ni at a time t + 1 is calculated by the
sum of the values Si, at time t, and the sum of the product of
the values Sj of the node nj , at time t, with the signed value
(weight) of the connecting link wij between nodes i and j:

Si(t+1) = f

�
Si(t)+

N�

j=1
j �=i

Sj(t)·wji

�
; �j � {1, . . . , N} (1)

Where: N is the total number of nodes in the map and
f is the activation function, which will be used to keep the
state values within the range [-1, +1]. Given this expected
output range, we use the Hyperbolic Tangent as the activation
function, which is commonly used in neural networks, known
as the tanh function of x and defined as:

f(x) =

�
ex � e�x

�
�
ex + e�x

� (2)

The system state is then defined by all activation values of
the nodes at a particular time t.

For example, consider the following initial state vector:
S(0) = [0.9, 0.9, 0.8, 0.0, 0.5, 0.5, 0.5, 0.3, 0.5, 0.0]. In this
vector the state values of nodes n1, n2 and n3, (0.9, 0.9, and
0.8 respectively), indicate a strong presence of these concepts
in this scenario; at the same time, a not so significant presence
of nodes n5, n6, n7 and n9 (with a state value of 0.5); and, a
weak presence of node n8 (with a state value of 0.3). Figure 2
shows the results of the model after 12 iterations (time steps),
starting from the defined initial state vector S(0) and until the
system reaches the stable state, as defined in section III; in
this figure the target or output variable n10 is activated with a
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full degree, indicating that the event “Seasonal virus-related
diseases” will definitely occur, with such conditions as defined
in the initial state vector S(0).

The values of all concepts N stabilize after a number of
iterations, and they correspond to a stable state of the system;
compared with the initial state some nodes increase, like nodes
n4, n5, n6, n7 and n9; others decrease, such as nodes n1, n2,
n3 and n8; and yet there might be others which are not affected
at all.

Fig. 2. System's output n10 after 12 iterations

III. UNSUPERVISED LEARNING AND THE NON-LINEAR
HEBBIAN LEARNING RULE

Construction of FCMs is based on the known cause-effect
relationships, as identified in historical data or from past
experiences; however, how much an event affects another
depends on the expert's beliefs, expressed as a real number. As
in neural networks, in FCMs the convergence to a steady state
can be automated as an unsupervised learning methodology;
the initial expert's beliefs in the map represent the initialization
of the parameters, which will be used by the learning algorithm
to adjust the link values of the FCM until a stable state is
reached.

The process of learning in neural networks consists of
searching for the system's parameters that minimizes the error,
which is defined by a cost or an objective function. This
searching process can be supervised or unsupervised and
Stochastic Gradient Descent has proven to be an effective
local search technique to obtain these parameters [7]. The
learning algorithm is defined as the mathematical model that
determines these parameters until the system reaches the stable
state. In an unsupervised learning the system expects an initial
set of parameters with the initial state and an error function,
expressed in terms of those initial parameters. The objective
in the learning process is to reach the minimum error with
the set of parameters found with the search technique; when
the error is 0 or close enough, then stable state of the system
is reached, and the corresponding parameters found will be
used for running the system in the future, for interpreting the
system's output based on new scenarios or inputs, which have
not been seen before.

Learning in FCMs means updating the values of the con-
necting links, by fine-tuning the initial set of link values
(weights) or wji parameters. In this work the Nonlinear
Hebbian Learning Algorithm (NHL) is been used, which is
based on a learning rule, expressed as follows [8]:

wij(t) = wij(t � 1) + �Sj(t � 1) · Si(t � 1) (3)

Where: wij(t) is the weight or link value between nodes i
and j at time t,

Si and Sj are the current node values of nodes i and j,
which were calculated using equation (1); and,

� is the learning rate.
The NHL algorithm, as proposed by [9, 10], takes the initial

connection matrix known as W (0) and iteratively updates the
set of parameters, minimizing the error as expressed in (4)
for all output nodes and until convergence; it consists of the
following seven steps and termination conditions:

STEP 1. Obtain the initial node values S(0), the initial
connection matrix W (0) and the conditions for the target
variables or output nodes, defined as: smin

j � sj � smax
j

STEP 2. For each iteration t
STEP 3. Update the weights according to equation (3)
STEP 4. Calculate S(t), for each node according to
equation (1)
STEP 5. Evaluate the two termination conditions, using
S(t) from STEP 4 and the connection matrices at steps t
and t � 1; e.g. W (t) and W (t � 1)
STEP 6. Until both termination conditions are met, go to
STEP 2
STEP 7. Return the final connection matrix W

The first termination condition, as referred in STEP 6, has
the objective of minimizing the cost function TC1:

TC1 =
� �

noutj

�nj(t) � Tj�2 (4)

Where: Tj is the mean target value of the output nodes Sj ,
which is determined as:

Tj =
Smax

j � Smin
j

2
(5)

The second termination condition is based on the difference
of subsequent values of the output node, which must be
less than a constant value � defined as a parameter of the
algorithm, and it is expressed as:

TC2 =

����nj(t + 1) � nj(t)

���� < � (6)

Where: nj(t) is the state value of node nj at time t.
The constant �, is the minimum error calculated as the

difference between subsequent node values.
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TABLE III
CONNECTION MATRIX W (0) OF THE FCM IN FIGURE 1,

REPRESENTING THE CONDITIONS THAT CONTRIBUTE TO THE
EVOLUTION OF SEASONAL VIRUS DISEASE IN THE SOUTH

COASTAL REGION OF ECUADOR

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

n1 0.0 0.7 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.6
n2 0.0 0.0 0.4 0.5 0.0 0.6 0.0 0.0 0.0 0.4
n3 0.0 0.4 0.0 0.5 0.4 0.6 0.0 0.0 0.0 0.7
n4 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 0.0 0.4 -0.7
n5 0.0 0.0 0.0 0.5 0.0 0.7 0.4 0.3 0.0 0.6
n6 0.0 0.0 0.0 0.6 -0.4 0.0 0.0 0.0 0.4 1.0
n7 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.3 0.0 0.4
n8 0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.0 0.0 0.3
n9 0.0 0.0 0.0 0.0 -0.3 0.0 0.0 0.0 0.0 -0.3
n10 0.0 0.0 0.0 0.4 0.5 0.6 0.6 0.0 0.5 0.0

IV. DATA SET AND SETTING THE PARAMETERS

The following parameters have been used to train and
evaluate the FCM, as expected in the generic NHL algorithm,
as defined in [10]:

The connection matrix or data set is derived from the FCM
and shows the link values between nodes. For example, node
n6 affects n4 positively (exitatory effect) with a value of 0.6
and node n4 affects n5 negatively (inhibitory effect) with a
value of 0.5.

For the experiments we have used historical data from
three different scenarios: a) The Dengue outbreak occurred in
2010, b) the seasonal virus-related epidemic of 2014-2015,
and c) the seasonal virus-related events of 2016. The initial
activation vectors were defined from the data extracted from
[3, 4, 13, 14, 15, 16, 17], and expressed as:

a) S(0) = [1.0, 0.8, 0.8, 0.4, 0.5, 0.6, 0.0, 0.5, 0.3, 0.0]
b) S(0) = [1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.4, 0.0, 0.2, 0.0]
c) S(0) = [0.0, 0.0, 0.0, 0.0, 0.0, 0.7, 1.0, 1.0, 1.0, 0.0]

These activation vectors represent the following settings: In
scenario a) we are interested in evaluating the coastal region
(node n1 is on with a degree of 1.0); as it was reported for
the 2010 event, we know that the temperature was above the
average (node n2 is on with a degree of 0.8); and, the rainy
season had started (node n3 is on with a degree of 0.8). It was
also reported that at the beginning of the event few actions,
from the public health entity, such as field visits for vaccination
were initiated (node n4 is on with a degree of 0.4); some of
the population was identified as susceptible of getting infected
by contact with infected patients (node n5 is on with a degree
of 0.5); also some symptoms were reported as associated with
Dengue (node n6 is on with a degree of 0.6) in areas with
more or less population density (node n8 is on with a degree
of 0.5); trash collection services were almost not present (node
n9 is on with a degree of 0.3).

In scenario b), as before we are interested in evaluating the
coastal region (node n1 is on with a degree of 1.0), during the
epidemic of 2014-2015 it was reported that the temperature
was high above the average (node n2 is on with a degree

of 1.0), and the rainy season was in full (node n3 is on
with a degree of 1.0). There were very few cases reported
with symptoms associated with Dengue (node n6 is on with a
degree of 0.2), and some were males with ages between 20-30
years old (node n7 is on with a degree of 0.4); trash collection
services were almost not present (node n9 is on with a degree
of 0.2).

In scenario c) we are interested to explore the seasonal
virus-related events of 2016, when several cases with symp-
toms associated with Dengue were reported in different parts
of the country (node n6 is on with a degree of 0.7), the cases
were mainly among people between 20-30 years old (node
n7 is on with a degree of 1.0) in areas with high population
density (node n8 is on with a degree of 1.0); in this year the
trash collection services were regularly present (node n9 is on
with a degree of 1.0).

In this problem domain we have nodes that inhibit the effect
of other nodes; hence the ”Hyperbolic Tangent” activation
function will be used for all scenarios, and as defined in
equation (2), it will keep the output values in the range [-1,
+1].

For all scenarios the stop condition for the target variable
or output node value, is set to: 0.6 � S10 � 1.0, as the range
of the desired confidence value for the output node. That is,
a target value around 0.6 activates the output node.

The constant value �, defined as the minimum error of
the difference in subsequent node values is set to 0.002, as
proposed by [10]. The learning rate � has been set to 0.01.

As part of the termination conditions we have also set a
maximum number of iterations, which will be used to loop out
if the 2 termination conditions are not met during the training
process; this number has been set to 50.

With the knowledge captured in the connection matrix and
the parameters defined as before, we have run the system for
the different scenarios and compared the results against the
events reported as the Dengue outbreak and other seasonal
virus-related diseases as identified in [3, 4, 13, 14, 15, 16,
17].

V. RESULTS

For scenario a), after 5 iterations the node values converged
with an � � 0.002, with a final stable state of the nodes'
values set to:

S(5) = [0.98071, 0.76234, 0.73929, 0.725664, 0.96580,
0.77908, 0.76031, 0.56895, 0.29707, 0.99864]

Table IV shows the iterations for this scenario; as we can
see the target value S10 of variable n10, is activated with
almost a full degree, indicating that the ”Seasonal virus-
related diseases” will definitely occur, as indeed did occur in
the Dengue outbreak of 2010, giving the conditions as defined
in S(0) for scenario a).

From the historical data for this scenario weather conditions
were within the main factors contributing to the evolution
of the Dengue outbreak. During this event the public health
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entity started to take some actions on the field. As the number
of infected cases increased, the population susceptible to get
infected also increased, as well as the cases among males
between 20 and 30 years old.

Results from this scenario suggest that there is consistency
with what really happened in 2010. An interesting result,
which also was reported in the historical records, is that
garbage collection started to improve after the outbreak, which
is also forecasted in the results of this scenario.

TABLE IV
ITERATIONS FOR SCENARIO A) THE DENGUE OUTBREAK

OCCURRED IN 2010

For scenario b), after 8 iterations the node values converged
with an � � 0.002, with a final stable state of the nodes'
values set at:

S(8) = [0.99066, 0.98714, 0.94736, 0.35001, 0.53000,
0.33489, 0.38881, 0.08002, 0.19628, 0.62000]

Table V shows the iterations for this scenario, we can
see that the target value S10 of variable n10, gets activated
with a degree of 0.62, indicating that ”Seasonal virus-related
diseases” can occur giving the conditions as defined in S(0).
In this scenario we can see that node n4� ”Actions from
a public health entity because of the season”, node n5�
”Population susceptible of getting infected by contact with
infected patients” and node n8� ”Areas with high population
density” got activated; information elicited from this event has
shown that in fact the public entity started real field actions
once the season also started, as well as the first seasonal virus-
related cases were reported; given the season environmental
conditions, which favor the spread of viruses, the population
susceptible to get infected increased, as well as the risk on
areas of high population density.

TABLE V
ITERATIONS FOR SCENARIO B) SEASONAL VIRUS-RELATED

EPIDEMIC OF 2014-2015

For scenario c), the system reached the stable state after
12 iterations, the node values converged with an � � 0.002,
with a final stable state of the nodes' values set to:

S(12) = [0.00000, -0.00005, -0.00028, 0.14027, 0.41020,
0.00264, -0.00054, -0.00003, -0.00015, 0.74870]

Table VI shows the 12 iterations for this scenario; we can
see that the target value S10 of variable n10, gets activated with
a degree of 0.7487, indicating that ”Seasonal virus-related
diseases” will probably occur giving the conditions as defined
in S(0) for this scenario.

TABLE VI
ITERATIONS FOR SCENARIO C) SEASONAL VIRUS-RELATED

EVENTS OF 2016

We can also see that nodes n4� ”Actions from a public
health entity because of the season” and n5� ”Population sus-
ceptible of getting infected by contact with infected patients”
got activated. Although, it can be interpreted as if the public
entity started some field actions, the degree is rather small
to draw some conclusions, and the records showed that there
were several public entities taking preventive actions during
the season. These results also show that risks of the population
susceptible to get infected increases and it needs to be looked
at, given the virus-related cases reported among the young
population of males in high density areas.

In general, the results obtained from these cases show that
”what if. . . ” scenarios could help decision takers and health
managers, make educated risk analysis and assert effective
actions to prevent epidemic events before they occur. A rea-
sonable set of actions, with practical implications for decision
takers, could be taken to mitigate or eliminate the effects of
the causes as represented in the map. For example, scenario a)
showed that when trash collection services were not present,
the effect on the epidemic outbreak was high; hence early
garbage collection actions could have helped in mitigating this
effect.

VI. CONCLUSIONS

The most significant weaknesses of the FCMs, is their
dependence on the expert's beliefs, and the potential conver-
gence to undesired steady states, which can be overcome by
automated learning. An unsupervised learning methodology
for FCMs training has been implemented and tested for
seasonal virus-related diseases in a tropical region of Ecuador.
The NHL algorithm adjusts and modifies the weights of FCMs
accordingly and has shown to be effective for learning the
parameters.
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This paper proposes a mathematical analysis for seasonal
virus-related diseases based on the Non-Linear Hebbian Learn-
ing algorithm for FCMs. The mathematical formulation and
the implementation of the algorithm have been effectively
investigated and the experimental results based on real his-
torical data, which captured the expert knowledge, verify
the effectiveness, validity and the expected behavior of the
proposed prognosis alternative. The proposed solution, once it
gets implemented is easy to used, it is flexible and can be set
to test ”what if. . . ” scenarios.

This technique depends on a good knowledge of a given
problem domain, the initial expert knowledge is fundamental
for configuring the initial state and its parameters. The expert
intervention is also relevant in evaluating the values of output
nodes of the FCM model to make sure they are within the
desired behavior.

Decision takers, health professionals assisting people and
those making early prognosis of causes, can benefit from this
technique; FCMs as a cause-effect knowledge representation
and NHL as the learning algorithm, can improve Decision
Support Systems and eHealthcare services based on historical
data and the effects of past decisions, for supporting future
educated course of actions.
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