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Abstract—This paper proposes a decentralized method for con-
trolling a swarm of autonomous agents represented as Unmanned
Aerial Vehicles (UAVs) to accomplish a set of tasks cooperatively.
The task commissioning is carried out by a Fuzzy Logic-based
task allocation strategy, and the movement behavior is based on
the internal state of the agent as well as the external data from
its neighbors through local communications. The solution was
modified from a centralized strategy developed in a previous work
in order to be enhanced, so the proposed distributed strategy
was tested considering the same experiments, configurations and
conditions applied to the centralized approach in a simulated
environment. To test the strategy, the planned activity to be
performed was planting seeds, in a field composed by a grid
of points that represents the places to be sown. Completion
times and collision avoidance attempts were measured to test the
effectiveness, as well as to perform a comparison between the
distributed and centralized methods. Important improvements
were found considering the size of agents in a swarm.

Keywords—swarm intelligence, fuzzy logic, agents behavior,
task allocation, farming automation, UAVs

I. INTRODUCTION

There is an increasing number of applications for Unmanned
Aerial Vehicles (UAVs) in recent years, specially for perform-
ing complex activities considering domains in which a swarm
behavior provides flexibility and robustness; in particular, hard
to solve problems where cooperative strategies can make the
difference [1]. The global intelligence, which emerges from
a group of simple and basic agents, is inspired by nature,
which has also led researchers to propose models to reproduce
community behaviors in order to solve complex tasks [2].

In a previous work [3] a centralized architecture for move-
ment control and collision avoidance was proposed. Sowing
seeds, as an activity for precision agriculture, was implemented
using this architecture, thus movement coordination and task
assignment to accomplish a common objective were designed
for a swarm of UAVs. However, as a centralized approach, a
complete agent independence is not part of the architecture.

The technique proposed in this research addresses two
problems: the decentralization of swarm behavior, hence the
entire logic for solving simple tasks resides within the agents,
leading to a result of collaborative performance through local

communication channels; and, the task allocation algorithm,
which is based on fuzzy logic, hence the time for accomplish-
ing the task is reduced, as well as the number of collision
attempts; both are important parameters for saving resources.

Our goal is to test the effectiveness, scalability and sta-
bility of the proposed solution as well as to perform a
comparison between swarm strategies (centralized and fuzzy-
decentralized), considering the same experiments and condi-
tions set in [3].

A. Related Work

There have been different strategies to control and coordi-
nate swarms of individuals. Algorithms such as Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) have
been used for such purposes as in [4], [5] and [6]; also,
other techniques have been applied for achieving a cooperative
behavior such as Artificial Potential Functions (APFs) in [7],
Time-Varying Formation (TVF) [8], and Fuzzy Logic as a
control method [5] [9] [10]. Nevertheless, these and other
proposals for swarm coordination use hybrid algorithms for
effectiveness in agent movements or optimization for task
completion.

Researchers have been focused on decentralized solutions;
in these cases, distributed agents behaviors, considering local
communication, have been designed. Wang et al [8] developed
a protocol to switch swarm topologies formation using state of
neighbors; De Souza et al [11] addressed the problem of wide-
area communications for coordinating UAVs. Other methods
considered simple exchange of data on local communication
as in [12] and [13]. These studies show the importance of
awareness among agents in distributed scenarios.

Usually, a task allocation solution is required for swarm
activities, as well as for other science applications, in which
efficient methods could enhance the performance of a sys-
tem [14]. For swarm intelligence problems, strategies such
as hybrids with PSO and Fuzzy Logic for scheduling [15],
agent negotiation [16], and Multi-Criteria Decision Making
(MCDM) [17], have been used. For other applications that
consider distributed systems, there have been methods like
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distributed polynomial in [18], and pure Fuzzy Logic [14].
The mentioned methods have been proved to be effective and
efficient on its respective applications.

This work proposes an architecture for a decentralized
movement control and a task allocation method based on
Fuzzy Logic, that uses agents and environment information
for inference. This model is a combination of strategies that
has not been explored before. The proposal has been tested
in a simulated scenario and compared against a centralized
solution from our previous work in [3].

II. BACKGROUND

A. Swarm Intelligence

Inspired by nature, Swarm Intelligence (SI) is a decen-
tralized collective behavior for self-organized individuals [2].
Such individuals follow simple rules and own limited abilities
to accomplish a complex task; but, through cooperation, a
complex behavior emerges as a swarm by using crucial local
mechanisms for the completion of the task [2] [19].

Models from nature are adopted for artificial swarm systems
whose self-organization basis consist of: positive and negative
feedback, fluctuations in behavior, and multiple interactions
[1]. However, other features are taken into account such as
parallelism, and exploitation of direct (peer-to-peer) or indi-
rect (via the environment) local communication mechanisms
[6]. According to Tan Ying et al [19], important characteristics
as parallelism, scalability, stability, economical, and energy
efficiency would allow systems to be built with great flexibility
and robustness.

B. Fuzzy Logic

There is an important number of applications based on
Fuzzy Logic theory, specially for control problems because
of its features such as robustness, ease to tweak, inclusion of
several inputs and outputs, complexity of rules, and handle
of non-linear systems difficult to model mathematically [20].

The fuzzy logic approach for swarm movement from De
Oliveira et al [9] is an example for controlling parameters like
UAVs acceleration by using the Takagi-Sugeno fuzzy inference
model, which is useful for controlling actions according to
numerical outputs [21].

The work of De Oliveira et al inspired us to use the Takagi-
Sugeno model as a solution for task allocation instead of
controlling movement parameters. Task allocation problems
have been solved with fuzzy logic before as in [14]. The fuzzy
logic-based task allocator proposed here is part of a distributed
swarm strategy as explained in section IV.

III. METHODOLOGY

In a previous work [3], a centralized solution for controlling
a swarm of agents was developed, in which the communication
occurs through a central control. This research is focused on
a distributed, also called decentralized strategy based on a
fuzzy logic approach for task allocation, in which the full
logic resides on each agent for coordinating activities, by using
a local communication module implemented with one-way
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Fig. 1: Diagram for distributed swarm strategy
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Fig. 2: Architecture for a decentralized agent

broadcast messages; hence, all agents close enough to each
other are able to receive the signals, but they do not answer
to them, they just send their local relevant data.

An agent-interaction diagram for the distributed solution
is shown in Fig. 1. The arrows on each agent represent the
message that is broadcasted through the environment; in con-
sequence, near agents receive the message and act accordingly
to their behavior. The swarm depends on a positioning system
which provides the spatial coordinates.

Each agent supports an architecture that is composed by a
main and a local communication module as depicted in Fig.
2. The main module is the central controller, which manages
the agent’s behavior by using a finite state machine (FSM),
whose decisions allow the agent to be moved towards a task
to be performed, or avoid collisions based on local data. The
task is assigned by a Fuzzy Logic-Based task allocator, which
uses data from the agent itself and its neighbors, as well as
the local current state of the cooperative activity, which is
controlled by another FSM for the entire activity to be solved.
The local communication module receives the agent’s position

2018 IEEE International Conference on Fuzzy Systems (FUZZ)
Authorized licensed use limited to: ESCUELA POLITECNICA DEL LITORAL (ESPOL). Downloaded on January 13,2023 at 14:21:12 UTC from IEEE Xplore.  Restrictions apply. 



in the world frame through the external position receiver; also,
broadcasts a message by using the local packet sender and
receives data from the local packet receiver. The packets from
the communication module are processed by the main module
as part of the interaction among agents.

In order to test the effectiveness of the proposed strategy,
the solution was implemented in a simulated environment
using the Unity3D engine. The experiments performed were
intended to be compared with the centralized solution devel-
oped in a previous work [3], thus the conditions for testing
were the same, i.e., a swarm of drones that performed a virtual
farming activity of sowing seeds in a field composed by a grid
of 10 x 10 holes. Likewise, 30 experiments were performed
using 1 to 30 agents in each trail; that is, up to 900 tests.
Also, static obstacles were distributed on the field in the same
positions as the past centralized strategy. The agents shared
the same configuration and set of features. After each run, the
time for accomplishing the task, the collision avoidances, as
well as the counting of planted seeds, were taken for each
agent. Comparisons between the centralized and decentralized
strategy were established based on results to verify whether
significant differences exist in accomplishing the task, the
time and number of collision avoidance attempts; also, the
effectiveness was tested considering whether all holes were
planted.

IV. DISTRIBUTED SWARM METHOD

As in [3], the task defined is sowing seeds, the swarm of
agents performs a set of movements for planting in a ground
represented as Pg and modeled as a grid composed by r rows
and c columns, where each element is a position in space
defined by equation (1).

Pg = {(x, y, z) : x, y, z ∈ R, y = 0} (1)

Each point in Pg is separated by a distance sep from
each other. Pg is represented as a one-dimensional array
which resides on each agent, and it is updated with the local
information gathered from its agent’s neighbors, which allows
to select the position where the agent needs to go according
to its internal and external data, as well as the fuzzy strategy
to choose a place to seed and collaborate mutually to finish
the whole activity.

A. Decentralized Agent Behavior

The real-time behavior established by the FSM from our
previous work was modified for a decentralized agent A, as
described in Fig. 3. The agent starts with an initialization
procedure, which is included as part of the strategy such as
the ground configuration as described before, a data collection
about neighbors, the positions of static obstacles, and starting
the local communication module, which operates within a
radius rlcom. At the beginning, each agent calculates the center
position ~Pgcenter defined by equation (2) for the field Pg and
changes its state to Waiting Neighbors, in which the agent
remains inactive for a time twn while processing the local
information received by neighbors.
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Fig. 3: Finite state machine (FSM) of a distributed agent

~Pgcenter =

∑r·c
i=1

~Pgi
r · c

: ~Pgi ∈ R3, i, r, c ∈ Z+ (2)

An agent A continually receives packets from neighbors,
as well as it sends its own data as a broadcast message. The
received data from a neighbor Ang is composed by: its current
position in space, a flag that denotes whether it is working or
not, and the time since it was turn on. When the agent A
receives a packet from a neighbor Ang , A adds two neighbors
to the data collection, Ang and its neighbor Ang2, but is not
part of A yet. When Ang sends a packet, Ang2 is not always
the same on every dispatching, because Ang2 is shifted among
the neighbors from the collection inside Ang , this strategy
allows the data to be spread out from agents that are not
reached by others, note that A does not have to consider itself
as neighbor in case that an Ang2 agent is A. Additionally, the
time since an agent was turn on is used to add a more recent
neighbor data, with the shortest time to A, in case that an
existent agent is received.

The current position in space from neighbors is used to
obtain the swarm center position ~Pscenter, given by equation
(3), which considers the current set of neighbors of size Na

with the agent A included. As a consequence of the continuous
local communication, the position vector ~Pscenter changes
constantly while neighbors are added (Na increases) until
twn ends in the Waiting Neighbors state, then the behavior
is changed to Waiting for Ascension state. It is important to
mention that the timer, which controls the finishing of twn, is
reset every time a neighbor is added, hence other neighbors
have the same chance to be part of agent A under the same
period twn.

~Pscenter =

∑Na

i=1 ~pai
Na

: ~Psi ∈ R3, i, Na ∈ Z+ (3)
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The state Waiting for Ascension keeps the agent on the
ground until a time twa is accomplished. This time twa allows
other agents, that are already ascending, to move with a
reduced possibility of collisions at the starting of the task,
which saves time. Because of delays in local communications
and a changing twn time, the resultant swarm from the local
communication coverage is not going to ascend at the same
time as in the centralized approach.

Considering stability and consistency, neighbors that were
identified inside an agent A have a lifetime tlfn, which is
constantly checked in order to remove an old neighbor that
might have been not working due to a failure or any other
circumstances, such as an out of range case. The timer that
controls the lifetime for a neighbor Ang is also reset every
time an agent A receives a packet from Ang , as well as Ang2,
considering that broadcasting is persistent.

When the time twa is finished, the FSM changes from
Waiting for Ascension to Ascending state to a defined height
hm. As in [3], the ascending and descending behaviors updates
the agent position ~pa by considering a speed sv for an upright
displacement towards hm (movement height) or hp (planting
height) for a period of time ∆t, as defined by equation
(4), which uses the unit vector ĵ to move vertically. This
equation takes into account an ascending movement, and; for
descending, the unit vector ĵ is inverted.

~pa = ~pa+ sv∆t̂j : ~pa, ĵ ∈ R3, sv ∈ R (4)

After the agent A reaches the height hm, the target position
to move is calculated considering the ground center ~Pgcenter
relative to the swarm center position ~Pscenter, as defined
in equation (5); then, its state changes to Moving, and A
goes to ~pagscenter throughout a straight line. Considering
that ~pagscenter is the current target position ~pt for A, then
~pt = ~pagscenter; that is, agent A travels from its current
position ~pa to a target position ~pt with speed sm, and following
a direction given by the unit vector defined in (6), which is
used in the movement equation (7) that allows the agent to
advance for a time ∆t until it arrives at the target ~pt.

~pagscenter = ( ~pa− ~Pscenter) + ~Pgcenter : (5)

~pa, Pscenter, ~Pgcenter ∈ R3

d̂ir =
~pt− ~pa

||~pt− ~pa||
: ~pt, ~pa ∈ R3 (6)

~pa = ~pa+ sm∆td̂ir : ~pa, d̂ir ∈ R3, sm ∈ R (7)

Due to a tolerance time tst, which is calculated before
entering to Moving state, A might not arrive exactly to

~pagscenter. This time tst uses the swarm radius rsw that is
obtained by measuring the distance from the center of the
swarm to the farthest agent inside, the distance between the
swarm center and the ground center dsg , and the moving speed
sm, as described in equation (8). While in Moving state, if tst
is reached, the agent stops to move towards the ground center
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Not taken 
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Agent is 

going to sow

Taken by 

an agent

In Process

Agent is 

sowing

Agent arrived 

to the point

Agent finished 

the sowing 

process

Not any

 influence

Fig. 4: Finite state machine for sowing a seed [3]

and starts to sowing seeds according to the fuzzy logic-based
allocator. This time tolerance is a mechanism to save time,
that can be wasted due to delays produced by the collision
avoidance interactions.

tst =
2rsw + dsg

sm
: rsw, dsg, sm ∈ R+ (8)

Collisions are managed locally by using positions from the
collection of neighbors and static obstacles; thus, a warning
collision radius rc has to be smaller than the local commu-
nication coverage rlcom, but large enough to prevent impacts.
The collision avoidance algorithm designed in [3] was used,
which forces an agent to change to a Moving Away state and
travel a distance dc away from the other agents, then return
to Moving again after avoiding a collision. This algorithm is
now distributed since it resides on board at each agent and its
effectiveness depends on local communication delays.

Once the fuzzy logic strategy assigns a hole, the agent
changes or is kept in Moving state towards its new target
position ~pt, avoiding collisions if needed, then arrives to its
goal and changes to Descending state, descends to an specific
height hp and switches to Performing Task state in which
a seed is released in the available hole in a time tp, then
ascends according to the Ascending state, and moves to the
next available target after a new fuzzy logic-based calculation
is done. This process is performed until all holes are filled,
which is controlled locally to avoid task re-doing. The states
for a hole are updated by the agents according to their actions.
Fig. 4 shows these states in the FSM.

Agent A changes the state of a hole from Free to Taken
when a free place is found; then, from Taken to In Process
state when the agent is in the Performing Task state, and finally,
Sown state is achieved when the agent dispatches the seed.
Agents are not able to take other holes than the free ones,
except if one of them is in taken state and it is considered
abandoned, which might happen when there are not free places
to seed on, and the fuzzy logic allocator is constantly selecting
the same hole in Taken state. It should be noted that the
whole activity is completed when all holes are ready (in sown
state), and taken holes can still be selected because the most
promising agents regarding a hole (free or taken) can sow it.
In this case, agent A changes its current state to Waiting for
Abandoned Tasks, as in Fig. 3, moving to a twice-agent-size
distance, until a time twat is accomplished, and then it goes
to the Taken place.
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The taken holes can be own by different agents according
to the internal data Pg in agent A. Additional parameters are
associated with the local data collection of places (holes) such
as: a flag fpa that denotes whether a hole is processed by the
agent A, and the identifier (ID) from the agent that is actually
possessing, which can be any agent in the swarm.

Agent A transmits part of its collection of holes parame-
ters to neighbors for keeping data updated; thus, neighbors
and places are transmitted together in one packet through a
broadcast message as mentioned previously. When a packet is
received by agent A, the local data for holes in A is updated as
long as fpa for each hole is false, e.g., if a place is in Taken
state, and this same place is in Sown state in the received
data, then the information is replaced together with the ID of
the agent that worked on that place; however, when there is
a conflict with taken places, the data from the nearest agent
to the place in dispute is chosen and forces agent A to select
another hole, in case A is not the nearest one; and possibly
trigger the rule of abandoned tasks.

Finally, the strategy to select places can be easily replaced,
by either using the immediate nearest place commission as in
[3], or the fuzzy logic-based task allocation explained below.
Therefore, the model described in this section is flexible
regarding a selection of the strategy.

B. Fuzzy Logic-based Task Allocator

In order to select a task to be processed from a set of free or
taken places, a Fuzzy Logic-based Task Allocation algorithm
was implemented by using input membership functions for
two linguistic variables, which are:

• Distance Agent-Target (Dat), which is the real-time dis-
tance given in meters from the agent to a possible target
to be selected. Its membership functions are depicted in
Fig. 5 and denote the fuzzy sets Close and Far.

• Angle between ~Agent-Center and ~Target-Center
(θatc), that is a value given in degrees and obtained from
position vectors ~pa (agent position), ~Pgi (position for
target i ), and ~Pgcenter (ground center position), thus
the two displacement vectors, for calculating θatc, are
defined in equations (9) and (10). Fig. 6 represents the
membership functions for the fuzzy sets Aligned, Aside
Offset, and Opposite.
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TABLE I: AND rules for fuzzy logic inference with z output
levels per pair

AND Aligned Aside Offset Opposite

Close 1.00 0.75 0.25
Far 0.50 0.25 0.1

~Agent-Center = ~pa− ~Pgcenter : ~pa, ~Pgcenter ∈ R3 (9)

~Target-Center = ~Pgi − ~Pgcenter : ~Pgi, ~Pgcenter ∈ R3 (10)

The crisp values that compose these functions are based
on a simulated environment, where an agent is represented
as a sphere of one meter of diameter and the ground is a
field of 40x40 meters, thus variables Dat and θatc have to
be adjusted to the conditions given by these parameters; in
this case, the values for meters and degrees that delimits the
starting and final points (0m, 5m, 15m, 20m; 0◦, 22.5◦, 67.5◦,
90◦, 112.5◦,157.5◦,180◦) as well as the intersection points
(10m; 45◦, 135◦) for the membership functions were chosen
by experimentation in favor of better results by considering a
linear shape.

The output obtained by the fuzzy inference process is
based on the Takagi-Sugeno method as proposed in [21]. The
solution is adjusted to a zero-order model; that is, the output
membership function is a constant value z associated with
each rule. The firing strength for a rule i is defined as wi,
which is obtained by the fuzzy AND operation given by the
minimal value from the evaluation of membership functions
values (0-1) when crisp values are taken as inputs for those
functions. The final output from the fuzzy process is the
weighted average of all N rules outputs, as shown in equation
(11). We call the value of Fc as the Factor of Choice for
a candidate target to be selected, thus the agent will iterate
through all the targets (holes) in order to find the higher Fc,
which will define the best place to go as result of this fuzzy
inference process.

Fc =

∑N
i=1 wizi∑N
i=1 wi

: wi, zi ∈ R, i, N ∈ Z+ (11)

The rules are all AND conditions as defined in Table I, in
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(a) t = 1.605 s (b) t = 9.706 s

(c) t = 15.164 s (d) t = 22.634 s

Fig. 7: Simulation screen-shots for different times considering
a group of 30 drones: Centralized Approach

which the content of the cells are the z values selected for this
strategy. Columns represent the fuzzy sets for variable θatc and
rows denote the sets for variable Dat. The z were intuitively
selected, therefore a more methodical criteria could be used
for selecting these values.

V. RESULTS

For testing purposes, a simulation was run for groups from
1 to 30 agents with 30 experiments for each group. The field
for the experiments was configured as a grid of 10x10 with
20 obstacles.

The component’s programming paradigm used by the sim-
ulator Unity3D allows the decentralized agents to be imple-
mented as objects with the same individual behavior, which
uses two components, one for the FSM as presented in Fig.
3 which contains local information for the ground states as
shown in Fig. 4, and the other for the communication module,
that generates an expansive wave for broadcasting constantly,
using the same radius coverage for all agents.

As shown in Fig. 7 and 8, the agents, denoted as circles, are
spread out to solve the task on the field at different times for
a swarm of 30 drones. The holes are represented by squares
along the ground and the obstacles by diamonds. Note the
differences between Fig. 7 (centralized approach) and Fig. 8
(distributed approach) considering the same points in time. The
central controller uses a strategy of selecting the immediate
nearest free place to be sowing, while the distributed control
uses the fuzzy allocation strategy to select those places by
trying initially to keep a formation towards the center of the
field, and next, spread out from that sector.

The planting time for each swarm of agents was registered
and compared among themselves to verify the improvement

(a) t = 1.605 s (b) t = 9.706 s

(c) t = 15.164 s (d) t = 22.634 s

Fig. 8: Simulation screen-shots for different times considering
a group of 30 drones: Distributed Approach

of time as the number of individuals increases. A relationship
between the number of drones and the time spent to finishing
the task was established as the function y = a

x+b because the
data behaves in a similar way to the centralized approach.
A non-linear regression is described in Table II, with an
estimation of goodness of 0.9757. Fig. 9 shows this behavior
in which a solid red line represents the found model from
the non-linear regression applied to our proposed distributed
approach; also, a dotted blue line from the model established
in our previous work for the centralized approach is drawn.
Note a high similarity in both lines. Also, observe that the data
owns considerable outliers in some number of drones, which
was not presented in the centralized approach.

For this proposed strategy, the number of drones is com-
pared against the number of collision avoidance, as seen in Fig.
10 the behavior is linear. A simple linear regression with an
estimation of goodness of 0.3756 was calculated to establish
this relationship. A regression equation described in Table III
was found (F (1, 898) = 147.5, p < 2.2x10−16), with an R2

of 0.1411. The estimation of goodness is a low value and
the relationship can be considered weak; despite of important
outliers which affects this calculation as Fig. 10 shows, it was
possible to find a model according to the data concentration;
a solid red line that represents the model for the distributed
approach is depicted as well as a dashed blue line that denotes
the model obtained in our previous work. Note that, with
few group of agents, the number of collision avoidances for
the distributed approach is greater than the centralized one;
however, as the number of agents increases, the collisions
attempts are reduced.

Another comparison between the centralized and the dis-
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TABLE II: Non-linear regression results for time in the dis-
tributed approach

Parameter Estimate Std. Error t value Pr(> |t|)

a 418.38302 5.72731 73.05 <2e-16
b 0.30636 0.02284 13.41 <2e-16
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Fig. 10: Curve: Number of Drones vs Number of Collision
Avoidances for distributed strategy: Solid line represents dis-
tributed approach and dashed line is the centralized approach

TABLE III: Linear regression results for collision avoidances
in the distributed approach

Parameter Estimate Std. Error t value Pr(> |t|)

a 682.551 66.292 10.30 <2e-16
b 45.357 3.734 12.15 <2e-16

TABLE IV: Group of agents with p-value < .05 for a t-test
considering Planting Times. Levene’s test p-value is showed
for each group

No.
Drones

µt1 µt2 µt1 − µt2 Levene’s test
P-value

1 330.905 327.939 2.966 < .05

4 87.548 86.145 1.403 > .05

8 52.098 49.061 3.037 > .05

20 28.923 26.539 2.384 > .05

21 28.256 26.795 1.461 < .05

22 27.804 24.436 3.368 > .05

23 27.749 24.532 3.217 > .05

24 26.824 24.306 2.518 < .05

25 26.834 22.639 4.195 > .05

26 27.119 22.890 4.229 < .05

27 26.086 21.218 4.868 > .05

28 25.707 22.343 3.364 > .05

29 25.231 20.727 4.504 > .05

30 24.425 20.579 3.846 > .05

TABLE V: Group of agents with p-value < .05 for a t-
test considering Collision Avoidances. Levene’s test p-value
is showed for each group

No.
Drones

µc1 µc2 µc1 − µc2 Levene’s test
P-value

2 456.533 401.733 54.800 > .05

4 647.833 571.667 76.166 > .05

10 1106.000 917.066 188.934 > .05

14 1580.767 1302.933 277.774 > .05

15 1779.667 1151.333 628.334 < .05

16 1997.733 1059.233 938.500 > .05

17 2005.633 1662.000 343.633 > .05

20 2507.067 1640.100 866.967 < .05

21 2665.100 1881.567 783.533 > .05

22 2711.233 1619.800 1091.433 > .05

23 2878.300 1648.833 1229.467 > .05

24 3011.933 1641.467 1370.466 > .05

25 3099.767 1702.800 1396.967 > .05

26 3108.967 1839.100 1269.867 < .05

27 3222.867 1696.933 1525.934 > .05

28 3300.767 1831.233 1469.534 > .05

29 3584.700 1819.833 1764.867 < .05

30 3639.500 1842.467 1797.033 > .05

tributed approach is that both data, for each group of agents,
were processed under the assumption of a normal distribution
given by the central limit theorem because of the size of the
data (≥ 30); thus, a t-test, for determining a significant differ-
ence in planting time means (µt) and collision avoidances
means (µc) for both strategies, was applied and calculated
properly, according with the results obtained from a Levene’s
test for homogeneity of variances. The alternative hypothesis
considers that, the centralized group’s times or collision avoid-
ance, are greater than the distributed group’s times or collision
avoidance (µt1 > µt2 ; µc1 > µc2). Tables IV and V show
the results for p-values according to the previous description,
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only those groups of agents whose null hypothesis is rejected
in favor of the alternative hypothesis for the t-test are taken
into account. Improvements for high number of agents can
be noted in the distributed fuzzy logic-based approach; the
reduction of collision avoidance is remarkable.

In terms of scalability, as well as in the centralized ap-
proach, the system completed every task with nothing more
than adding or removing agents without any modification on
the configuration or the implementation; however, in some
experiments for large-sized swarms, there were between 1
to 6 extra seeds released, but effectiveness was not affected.
Also, considering stability, in some experiments agents were
removed in real-time and the completion of the activity was
not affected.

VI. CONCLUSIONS

This paper presents a distributed strategy for controlling a
swarm of agents and tasks assignment based on a fuzzy logic
approach. The results compare two parameters; completion
times and collision attempts, between a distributed and a
centralized strategy, under the same conditions in a simulation.

The time for performing the task decreases as the number
of agents is increased by following a non-linear behavior with
a clearly similarity between strategies; there were groups of
individuals with an improvement considering the distributed
method, specially for groups of 20 or more agents; hence, this
new strategy is able to reduce times for large groups of agents
compare to our previous solution.

Regarding collisions, there is a contrast between both solu-
tions in which the distributed strategy registers more possible
collisions for small groups; but, for larger groups, the reduction
is considerable, near 50% of improvement for the largest
swarm; thus, the distributed solution avoids less collisions than
the centralized approach for large groups of agents.

For implementing this strategy in real environments the
communication delays have to be considered, since these could
increase the collisions attempts, and tasks can be unnecessarily
dispatched.

Finally, these findings can be useful for energy saving
considering that real UAVs consume high amounts of en-
ergy that need to be store in small suitable batteries. Also,
a full decentralized swarm coordination algorithm; like the
one proposed here, meets the requirements for achieving the
completion of an activity in terms of scalability and stability,
properties from an artificial swarm of individuals.

For future work, the strategy is intended to be refined
to reduce outliers and wasted resources (extra seeds), and
implemented with real UAVs by considering the addition
of sensors to get the autonomy required for an out-door
environment.
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